Applications of hydrogels

Last Day: polyelectrolyte gels
 Polyelectrolyte complexes and multilayers
 Theory of ionic gel swelling

Today: hydrogels in biomedical/bioengineering applications
 Linking gel mesh size to diffusivity of solutes

Reading: -

ANNOUNCEMENTS:
Last time
Applications of hydrogels in bioengineering
Hydrogels applied to drug delivery
On/off drug release using PE hydrogels

Two strategies:
Drug delivery

Kinetics of drug release from hydrogels using swollen-on/collapsed-off mechanism

Image removed due to copyright reasons.
Please see:
Drug delivery

Mesh size of hydrogel networks

\[(<r_0^2>)^{1/2} = N_c^{1/2}a\]

- \(N_c\): Number of segments between cross-links
- \(a\): Statistical segment length

\(P_{\text{gel,opening}}^*\)

\(P_{\text{gel, volume}}^*\)

Lecture 10 Spring 2006
Connection between mesh size and diffusion coefficient of entrapped molecules
Controlling diffusivity for responsive drug delivery: treatment of diabetes

Glucose oxidase + \text{Glucose} \rightarrow \text{Gluconic acid} + \text{H}_2\text{O}_2

Lecture 10 Spring 2006
Controlling diffusivity for responsive drug delivery: treatment of diabetes

Image removed due to copyright reasons.
Please see:
Drug delivery

Response of gel microparticles

Graphs removed due to copyright reasons.
Please see:
Drug delivery

Glucose sensitivity

Graph removed due to copyright reasons.
Please see:

Graph removed due to copyright reasons.
Please see:
Diffusion rate changes in responsive microgels

Graphs removed for copyright reasons. Please see:
Drug delivery

Chemical functionality in hydrogels can be utilized for responsive hydrogels

Mechanisms of environmental responsiveness in hydrogels:
Chemical functionality in hydrogels can be utilized for responsive hydrogels

Figure by MIT OCW.

(Takahashi et al. Macromol 32, 2082-2084 (1999))
Immunoisolation/encapsulation of living cells
Formability: photoencapsulation

In sterile culture media:

Cyclohexyl phenyl ketone:

\[
\text{CH}_2\text{CH} = \text{C} - \text{O} \left(\text{CH}_2\text{CH}_2\text{O}\right)_n \text{C} - \text{CH} = \text{CH}_2
\]

\[
\text{UV } \text{hv} \rightarrow
\]

Lecture 10 Spring 2006

17
Formability: photoencapsulation

Graph of Biochemical Analysis removed due to copyright restrictions.
Images removed due to copyright restrictions,
Please see:
Hydrogels for tissue engineering
Motivation for hydrogels as tissue scaffolds:
Hydrogels are readily modified with biological recognition sites.

Incorporating biological recognition:

- Adhesion sequence: WGRGDSP
- Photopolymerization
- Peptides

NR6 fibroblast adhesion on PEG-RGD hydrogel (no cell adhesion on ligand-free hydrogels)

- Collagenase sequence: GWGLGPAGK
- Photopolymerization
- Peptides

In situ formability: strategies for macroporous structures

Images removed for copyright reasons.
Please see:
In situ formability: example: ‘printable’ gels

Chilled/heated printing heads provide 4-70°C dispensing

Temperature-controlled stage

Images removed for copyright reasons.
Please see:
Further Reading