Rudiments of vaccine design

Last Time: continued discussion of stealth particles
 basic immunobiology underlying vaccination

Today: basics of vaccine design and vaccine immune responses

Supplementary Reading:

ANNOUNCEMENTS:

Note on take-home exam: 6-page limit includes any schematics or figures from the literature (1/3 of space max)
KEY EFFECTORS OF ADAPTIVE IMMUNITY

Image removed due to copyright reasons.
1) Attraction to sites of infection

2) Antigen loading and activation

3) Trafficking to lymph nodes

4) Activation of naïve T cells in the lymph nodes

Chemotaxis:
Migration ‘up’ concentration gradients of chemoattractant
PAMP recognition of microbes by dendritic cells

Immune cells integrate many signals to ‘fingerprint’ pathogens:

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.
Biology of dendritic cells in T cell activation

Classical pathways of antigen processing and presentation:

- classical Class I antigen loading pathway
- exogenous ANTIGEN
- Classical II antigen loading pathway
Antigen is one of (at least) two signals that must be delivered by a vaccine.

- MAXIMAL T CELL PROLIFERATION
- GENERATION OF FULL EFFECTOR FUNCTIONS
- GENERATION OF MEMORY T CELLS
- NO T CELL ACTIVATION
- T CELLS TOLERIZED

Signal 1 - antigen
Signal 2 - costimulation
B cell activation

Image removed due to copyright restrictions.
Induction of immunological memory (the basis of vaccination)

OBJECTIVES OF VACCINATION

T + B MEMORY:

MEM. T CELLS ➔ RESPOND QUICKLY DIRECTLY AT INFECTION SITE

POPULATE PERIPHERAL TISSUES

(NAIVE T STAY IN CIRCUIT LNS ↔ BLOOD)

MEM. B CELLS ➔ BONE MARROW / PERIPHERAL TISSUES

Image removed due to copyright restrictions.
Prophylactic vs. therapeutic immunization

Two situations where vaccination is of interest:

(1) Therapeutic vaccine:
- Treat an ongoing condition
 - Cancer
 - HIV
 - Generate effector cells against pathogen/tumor
 - Made challenging by ongoing "subversive functions of microbes/tumors"

(2) Prophylactic vaccine:
- Prepare memory cells against future exposure
 - Made challenging by need for safety
ROUTES OF IMMUNIZATION

Image removed due to copyright restrictions.
Rudimentary components of vaccines

• Antigen: FRAGMENT FROM ORIGINAL PATHOGEN / TUMOR, OFTEN PROTEIN (PEPTIDE FOR T CELLS)
 ALUM DRIVES "TH2" RESPONSE → GENERATES ABS, \(\uparrow \) BUT T CELL RESPONSE \((ALLERGIC REACTION) \) IS POOR

• Adjuvant: "2ND SIGNAL" THAT ACTIVATES DCs, PROMOTES EFFECTOR AND MEMORY LYMPHOCYTE DEVELOPMENT
 DEPOT / ANTIGEN
 \(\rightarrow \) ONLY 2 FDA-APPROVED ADJUVANTS:
 1. ALUM (ALUMINUM HYDROXIDE)
 2. MF59 (SQUALANE / OIL) + SURFACTANTS
Compositions of vaccines - clinical and experimental

- **Live attenuated pathogen**
- **Killed pathogen**

 - **Traditional**: e.g., adenoviral vectors
 - **Live**: e.g., Polio vaccine
 - Fixation or disruption
 - Manufacture and characterization is challenging
 - Safety is an issue (e.g., HIV)
 - Strongest immune response
 - Built-in adjuvant
 - Self-replicating antigen
Compositions of vaccines - clinical and experimental

‘engineered’ vaccines:

• Subunit vaccines
 – Whole protein
 – Peptide vaccines
 – Virus-like particles

- EASIER MANUFACTURE/CLEAN
- BETTER SAFETY
- IMMUNE RESPONSE NOT AS STRONG AS LIVE VECTORS

PURIFIED PROTEIN + ADJUVANTS

WEAK CD8+ T CELL RESPONSES

GREAT Ab RESPONSES

CROSS PRESENTATION
Compositions of vaccines - clinical and experimental

‘engineered’ vaccines:

• DNA vaccines

- DNA is cheap, robust
- Not yet effective in humans

Dendritic cell

CD4+ T cells

CD8+ T cells

Inject (naked) DNA

Self-replicating antigen

Encoding antigen
Compositions of vaccines - clinical and experimental

‘engineered’ vaccines:

• DNA vaccines
Existing vaccines

Table removed due to copyright restrictions.
Existing vaccines

Table removed due to copyright restrictions.
Biomaterials to adjuvant subunit vaccines:

intracellular drug delivery and the design of protein and peptide vaccines that stimulate cytotoxic T cell responses
Cross presentation and Particulate antigen delivery

- Classical Class I antigen loading pathway
- Exogenous ANTIGEN
- Class II antigen loading pathway
- CD4+ T cells
- CD8+ T cells
Pathways of intracellular import

Endocytosis:
(nearly all cells)

Image removed due to copyright restrictions.
Pathways of intracellular import

macropinocytosis:

Image removed due to copyright restrictions.
Please see: http://www.cellsalive.com
How do exogenous antigens get presented on class I MHC?

Image removed due to copyright restrictions.
Particle-stimulated cross presentation

Graph removed due to copyright restrictions.

Image removed due to copyright restrictions.
Particle-stimulated cross presentation

Images and graph removed due to copyright restrictions.
ENDOSOMAL ESCAPE:

Enhancing cross presentation
cytosolic delivery of large macromolecules
Mechanisms for endosomal escape by polymeric carriers

(1) ‘proton sponge’ effect

(2) Direct membrane interaction/destabilization

(3) pH-activated CPPs
Proton sponge effect

polyethyleneimine

Endosome interior

Ion transporters

Proton pumps

\[
\left(\text{NH CH}_2 \text{CH}_2 \right)_x \left(\text{N} \right. \left. \begin{array}{c} \text{CH}_2 \text{CH}_2 \text{NH}_2 \\ \text{CH}_2 \text{CH}_2 \text{NH}_2 \end{array} \right)_y
\]

Lecture 20 Spring 2006
Further Reading

Further Reading