Intracellular drug delivery: aing cross presentation of subunit vaccines

Last Time: basic vaccine concepts

Today: Using synthetic biomaterials to enhance cytosolic delivery of molecules

Reading: Wang et al. ‘Moleculaely engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines,’ Nat. Mater. 3 190-196 (2004)

Supplementary Reading:

ANNOUNCEMENTS:

Course Evaluation Next Tuesday 5/16
Particle-stimulated cross presentation

Graph removed due to copyright restrictions.

Image removed due to copyright restrictions.
INTRACELLULAR DRUG DELIVERY AND VACCINES:

1. Boost cross presentation of protein antigens
2. Cytosolic delivery of DNA is a step on path to nucleus

Image removed due to copyright restrictions.
ENDOSOMAL ESCAPE:

Enhancing cross presentation
cytosolic delivery of large macromolecules

(1) ‘proton sponge’ effect
(2) pH-activated polymers
 and peptides
INTRACELLULAR VS. EXTRACELLULAR ENVIRONMENT

Image removed due to copyright restrictions.
Proton sponge effect

ENDOSOMAL ESCAPE: 'PROTON SPONGES'

1. **Osmotic swelling that bursts** OR causes endosome to become leaky
2. **Proton pumps** try to keep pH constant
3. **Anion flux** to maintain charge neutrality
4. **Vector** becomes a high-capacity proton sink

CAVEATS:
Polyocations/cationic lipids tend to be toxic at high doses

ENDOSOMAL ESCAPE:

- **NaCl**
- **H₂O**
- **Cytoplasm**
- **Ion transporters**
- **Proton pumps**
- **Polyethyleneimine**
Role of additional structural features of PEI in efficient endosomal escape:

Images removed due to copyright restrictions.
Endosomal escape by direct membrane interactions

Both polycation and polyanion headgroups with pKas = 5-7 can promote endosomal escape:

ENDOSOMAL ESCAPE:
PH-RESPONSIVE POLYMERS

Image removed due to copyright restrictions.

pH: 7.4

Phase transitions driven by:
- Concentration, Temp, pH

Phase transition causes fusion with vesicle membrane

Protonation/uncharging

Polyanionic liposome

pH: 5.0

Lecture 21 Spring 2006
Endosomal escape by direct membrane interactions

Both polycation and polyanion headgroups with pKas = 5-7 can promote endosomal escape:

pH: 7.4

Polycationic liposome

pH: 5.0

Electrostatic attraction of liposome to vesicle wall
STRATEGIES FOR CUED ‘BURST’ RELEASE OF CARGO COINCIDENT WITH ENDOSONMAL ESCAPE

ENDOSOMAL ESCAPE: PH-RESPONSIVE POLYMERS

POLY (β-AMINO ESTERS)

CHARGED AT pH ≤ 7

BIODEGRADABLE

PBAE MICROSPHERE LOADED W/DRUG

POLYMER DISSOLVES

RAPID + TOTAL RELEASE OF DRUG

Images and graph removed due to copyright restrictions.
Approaches to endosome escape:
‘encrypted’ polymers

Multi-function molecular carriers:

Figure removed due to copyright restrictions.

ENDOSOMAL ESCAPE: PH-RESPONSIVE POLYMERS

(1) RECEPTOR TARGETING

(2) DRUG TARGETING MECHANISM

(3) PH DECREASE

(4) CYTOSOLIC REDUCTION
Bioinspired pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs."

Results with peptide delivery by encrypted polymers

Figure removed due to copyright restrictions.
Example vaccine results: pH-responsive gels as vaccines

Example vaccine results: pH-responsive gels as vaccines

Figure removed due to copyright restrictions.
DIRECT ENTRY TO THE CYTOSOL

Membrane-penetrating peptides

Pore-forming peptides
(DERIVED FROM PATHOGENS)

Fusogenic peptides
(LIPOSOME)
(DERIVED FROM VIRUSES)
Cell-penetrating peptides (CPPs) [aka Protein Transduction Domains (PTDs)]

Image removed due to copyright restrictions.
DIRECT ENTRY TO CYTOSOL:
MEMBRANE-PENETRATING PEPTIDES

Sources and sequences

CIPS TEND TO HAVE:

{HYDROPHOBIC SEQUENCE

CATIONIC: HIS (H) LYS (K) ARGinine (R)

HYDROPHOBIC: ALA (A) VAL (V) TRP (W) ...

Table removed due to copyright restrictions.

Penetratin:
Short peptide sequence from drosophila transcription factor protein Antennapedia

RQIKIWFQNRRMKWKK

Models of membrane-penetrating peptide function

Figure removed due to copyright restrictions.
Please see: Figure 7 in Derossi, D., et al.
CPP function in vitro

DIRECT ENTRY TO CYTOSOL: MEMBRANE-PENETRATING PEPTIDES

Uptake of penetratin by primary neuronal cells:

- **Caveat 1:** Typically can deliver peptides up to 100 aa in length \(\rightarrow \) \(<60 \text{ kDa} \)
- **Caveat 2:** Some question about universality - work in all cells?

Protein delivery using HIV tat peptide:

Images removed due to copyright restrictions.

Images and graph removed due to copyright restrictions.
Images removed due to copyright restrictions.
ACTIVATION ON ENTRY TO THE CYTOSOL
Selective bond dissociation using reversible disulfide linkages

Figure removed due to copyright restrictions.
Pore-forming proteins/peptides as a tool for membrane-penetrating drug carriers

Figure removed due to copyright restrictions.
Please see: Figure 1 in Bhakdi, S., et al.
"Staphylococcal Alpha-Toxin, Streptolysin-O and Escherichia Coli Hemolysin: Prototypes of Pore-Forming Bacterial Cytlysins."
DIRECT ENTRY TO CYTOSOL: FUSOGENIC PEPTIDES

fusogenic peptides: using viral entry strategies for drug delivery

Images removed due to copyright restrictions.
Further Reading