PBC Day 1 Recitation Notes

Agenda:
I. Why purify proteins
II. Why does purification work?
III. β-galactosidase Intro
IV. Module Overview
V. β-galactosidase activity assay

I. Why purify proteins

- structure determination
- enzymatic activity
- to determine binding partners in the cell
- antibody production

II. Why does protein purification work (what properties can we take advantage of?)

- proteins have different charges
- proteins have different hydrophobicity
- proteins have different substrates (and binding affinity to those substrates)
- proteins have different sizes and quaternary structures
- proteins have different solubilities

III. β-galactosidase intro

- functions as a tetramer
- breaks down lactose in the cell (see overhead)

IV. Module Overview and Day 1 techniques (see handout)

V. β-galactosidase activity assay (see handout as well)

- Information that you can get from this assay:
 - total activity of a sample
 - yield (how much at each step of a purification)
 - total activity + total protein --> specific activity --> measure of purity
- Can be quantitative (using spec) or qualitative (by eye)
- When doing assays, need to time accurately!
Figure removed due to copyright reasons.

Please see:-
Figures removed due to copyright reasons.
Help Aliaa with the β-galactosidase Purification Scheme!

Bacterial cell pellet

- Thaw at 37°C

A. Disrupt Cells
1. Freeze thaw
2. Lysozyme
3. Triton X-100 + ddH₂O

B. Treat to Remove DNA
1. DNase I

Centrifuge

Crude Lysate

- Other proteins + β-gal
- from lysis cells

Notes:
- Two strains: CS936 or H15461
- Freeze thaw - outer membrane
- Lysozyme - break down cell wall
- TritonX-100 - bursts inner membrane
- DNase - break down genomic DNA
- Removes insoluble material
Crude Lysate

C. Precipitate Proteins
 1. Ammonium Sulfate (45%)

D. Column purification
 1. PD-10 (desalting)

1. DEAE (ion exchange)
2. PD-10
1. APTG-affinity

Purified β-gal
ONPG \text{ (Substrate for β-gal)}

2-Nitrophenyl-β-D-galactopyranoside

β-gal cleaves here

Galactose \quad O-nitrophenol (ONP)
\text{YELLOW absorbs @ 420nm}

βgal \times ONPG cleavage \times ONP product