Using lateral capillary forces to compute by self-assembly

Paul W. K. Rothemund†

Mark Garcia

7.349

4 May 2005
Purpose

• Will tile sets that encode computations be more likely to defect formation?

• What rules must SA follow to orient successfully?
Materials and Methods

• Tiles were laser cut, sprayed with acrylic blue and the paint was cut to make defining patterns
• Each step involved moving one structure; interaction with another was termed a bond
• Tiles were shaken with n-hexadecane superphase and an aqueous sodium metatungstate subphase
Figure from Rothemund P. W. "Using lateral capillary forces to compute by self-assembly." Proc Natl Acad Sci U.S.A. 97, no. 3 (Feb 1, 2000): 984-9. Copyright 2000 National Academy of Sciences, U.S.A. Used with permission.
Figure from Rothemund P. W. "Using lateral capillary forces to compute by self-assembly." *Proc Natl Acad Sci U.S.A.* 97, no. 3 (Feb 1, 2000): 984-9. Copyright 2000 National Academy of Sciences, U.S.A. Used with permission.
Figure from Rothemund P. W. "Using lateral capillary forces to compute by self-assembly." *Proc Natl Acad Sci U.S.A.* 97, no. 3 (Feb 1, 2000): 984-9. Copyright 2000 National Academy of Sciences, U.S.A. Used with permission.
Conclusions

• Tiles must bind reversibly
• Associations must be cooperative
• WC\textsubscript{s} can be used to enforce matching rules for a simple computation
• WC\textsubscript{s} made binding of tiles cooperative