Pairwise Alignment
(or models and algorithms are your friend)

Lecture 2
6.874J/7.90J/6.807

David Gifford
Gene similarities revealed by dot plot

Image removed for copyright reasons.
Dot Plots

Align subsequences of $S1$ and $S2$; place dot when score is high
Pairwise Alignment (Global)

Given a query sequence x, what is the best alignment to a sequence y?

y HEAGA WGME - E
x -- P - AW - MEAE

Protein (20 letters, X, -)

RNA (A, C, G, U, -)

q_s probability of symbol s occurring at random in a sequence.
Two possible models

- Model R - Random – The sequences are unrelated and were generated by coin flips (biased)
- Model M – Match – The sequences were derived from a common ancestor sequence
A Probabilistic Model of Alignment

\[P(x, y \mid R) = \prod_i q_{x_i} \prod_j q_{y_j} \]

Joint probability that \(a \) and \(b \) have been originally derived from some (unknown) ancestor \(c \) (might be the same as \(a \) or \(b \))

\[P(x, y \mid M) = \prod_i P_{x_i, y_i} \]
The Odds Ratio Statistic
(No Gaps)

\[
\frac{P(x, y \mid M)}{P(x, y \mid R)} = \prod_i \frac{P_{x_i y_i}}{q_{x_i} q_{y_i}}
\]

\[
S = \log \left(\frac{P(x, y \mid M)}{P(x, y \mid R)} \right) = \log \prod_i \frac{P_{x_i y_i}}{q_{x_i} q_{y_i}}
\]

\[
S = \sum_i S(x_i, y_i)
\]

\[
S(a, b) = \log \frac{P_{ab}}{q_a q_b}
\]
Example

\[x_1 = C \quad y_1 = Q \]

\[q_{x_1} = \frac{1}{20} \quad q_{y_1} = \frac{1}{20} \quad q_{x_1,y_1} = \frac{1}{400} \]

\[P_{x_1,y_1} = P_{CQ} = \frac{1}{800} \]

\[S_{x_1,y_1} = S_{CQ} = 3 \log_2 \left(\frac{1}{800} \right) = 3 \log_2 \left(\frac{1}{400} \right) = -3 \]
Substitution Matrix

• Logical to think of it in terms of evolutionary time

\[S(a, b \mid t) \]

• **PAM (Point Accepted Mutations)**: Based on substitution data from alignment between similar proteins
 – (1% expected substitutions = 1PAM)
 – \(\text{PAM}_n = (1PAM)^n \)

• **BLOSUM (BLOck Scoring Matrix)**: Multiple alignment of distantly related proteins
 – BlosumL = Sequences with L% or more of identical residues were clustered to compute log-odds ratio
BLOSUM50

Image removed for copyright reasons.
Image removed for copyright reasons.
Gap Penalties

• We can penalize a gap with the function

 \[gd \]

 where \(g \) is the length of the gap

• Typical gap penalties in practice for proteins
 – \(d=8 \) third-bits used in Durbin

• We can also add a fixed penalty for opening a gap
Affine gaps

• Assume log odds-ratio of a gap decreases geometrically:

\[f(g) = p(1 - p)^{g - 1} \]
\[\log f(g) = \log p + (g - 1) \log(1 - p) \]
\[d = -\log p \]
\[e = -\log(1 - p) \]
\[\log f(g) = -d - (g - 1)e \]
\[s(g) = -d - (g - 1)e \]
Let’s find the best alignment

• To do this we will maximize the score, taking into account our ability to incorporate gaps
• We could enumerate all of the possible alignments…
How many possible alignments exist?

An intercalation of x and y (discards gaps):

$$x_1, x_2, \ldots, x_n \quad \rightarrow \quad x_1 y_1 x_2 y_2 \ldots x_n y_n$$

$$\binom{2n}{n} \text{ intercalations exist...}$$

$$\approx \frac{2^{2n}}{\sqrt{\pi n}} \quad \text{Yikes!}$$
Needleman-Wunsch (global)

- $F(i,j) = \text{score of best alignment of}$

 $x_{1...i}$ and $y_{1...j}$

- Suppose $F(i-1,j-1), F(i-1,j), F(i,j-1)$ are known

\[
F(0,0) = 0
\]

\[
F(i,j) = \max \begin{cases}
 F(i-1, j-1) + s(x_i, y_i), \\
 F(i-1, j) - d, \\
 F(i, j-1) - d
\end{cases}
\]
Example: Needleman-Wunsch

y HEAGAWGME-E
x --P-AW-MEAE
Example: Needleman-Wunsch

Image removed for copyright reasons.
Smith-Waterman (Local Alignment)

\[F(0,0) = 0 \]

\[F(i, j) = \max \begin{cases} 0, \\ F(i-1, j-1) + s(x_i, y_i), \\ F(i-1, j) - d, \\ F(i, j-1) - d \end{cases} \]

- Key idea is to look for best alignment between subsequences
- Expected score of random match must be negative
Example: Smith-Waterman

Image removed for copyright reasons.
What does a score mean?

• How can we tell if our match is significant?

• Isn’t this related to the size of the query and the database?
Being Bayesian

• Assume a casino uses a loaded die 1% of the time.
• A loaded die will come up six 50% of the time.
• You pick up a die at the casino and roll it three times, getting three sixes.

• What is the chance the die is loaded?
Being Bayesian: II

\[P(X \mid Y)P(Y) = P(Y \mid X)P(X) \]

\[P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)} \]

\[P(D_{\text{loaded}} \mid 3 \text{sixes}) = \frac{P(3 \text{sixes} \mid D_{\text{loaded}})P(D_{\text{loaded}})}{P(3 \text{sixes})} \]

\[= \frac{(0.5)^3(0.01)}{(0.5)^3(0.01) + (\frac{1}{6})^3(0.99)} \]

\[= 0.21 \]
Comparing Models (Bayesian)

\[
P(M \mid x, y) = \frac{P(x, y \mid M)P(M)}{P(x, y)}
\]

\[
= \frac{P(x, y \mid M)P(M)}{P(x, y \mid M)P(M) + P(x, y \mid R)P(R)}
\]

\[
= \frac{P(x, y \mid M)P(M) / P(x, y \mid R)P(R)}{1 + P(x, y \mid M)P(M) / P(x, y \mid R)P(R)}
\]
Comparing Models (Bayesian)

\[
P(M \mid x, y) = \frac{P(x, y \mid M)P(M)/P(x, y \mid R)P(R)}{1 + P(x, y \mid M)P(M)/P(x, y \mid R)P(R)}
\]

\[
= \frac{e^{s'}}{1 + e^{s'}}
\]

where \(s' = S + \log \left(\frac{P(M)}{P(R)} \right) \)
Comparing Models (Bayesian II)

\[P(M \mid x, y) = G(S') \]

\[G(x) = \frac{e^x}{1 + e^x} \]

\[S' = S + \log \left(\frac{P(M)}{P(R)} \right) \]

- Global alignment: compare \(S \) with \(\log N \)
- Local alignment: compare \(S \) with \(\log MN \)
Classical Approach: Extreme Value Distribution

• Expected number of unrelated matches for a local alignment (E-value)

\[E(S) = Kmn2^{-\lambda_S} \]

• Used by BLAST
Building Phylogenetic Trees

- Unweighted pair group method using arithmetic averages (UPGMA)

- Clusters sequences based on evolutionary distance
Example: UPGMA

Image removed for copyright reasons.
Parsimony-based Phylogenetic Trees

• Build all possible trees

• Choose tree that uses fewest number of substitutions
Example: Parsimony

Image removed for copyright reasons.
Fin