INTELLIGENCE

John Gabrieli 9.00
Exam 2 – Next Thursday

50 multiple-choice questions
30 from book (Chapters 5-7)
20 from Sacks & lectures
5 short answers (4 pts)
Select 5 from 8-10 choices
70 points
WHY HAVE TESTS?
WHY HAVE TESTS?

• learning
• selection & prediction

achievemnt

aptitude (SAT, GRE)
Standardized tests and graduate students’ success

• tests are good predictors
• tests predict success better than grades
• combination of tests and grades is best

Kuncel & Hezlett, Science, 2007
(.4 correlation between sex & height)

© AAAS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
WHAT IS INTELLIGENCE?
WHAT IS INTELLIGENCE?

• ability to solve problems
• understand and learn complex material
• adapt to the environment
• mental quickness
WHAT MAKES SOMETHING AN EXPERIMENT?

dependent variable
what you measure - the outcome

independent variable
what you vary

Studies of intelligence are almost always correlational and rarely experimental

Studies of intelligence focus on differences among people rather than intelligence per se
Positive Correlation

Image by MIT OpenCourseWare.
IQ = Intelligence Quotient

- France, 1904-1911, universal elementary education
- Alfred Binet, physician, aimed for an objective way to identify children who needed extra help
- many abilities, many tests - copy a drawing, repeat digits, recognize coins, explain why a statement did not make sense
IQ = Intelligence Quotient

• give test to normal children at multiple ages
• mental age vs. chronological age
IQ = Intelligence Quotient

• David Wechsler
 Wechsler Adult Intelligence Scale (WAIS)
 Wechsler Adult Intelligence Scale for Children (WISC)
 Verbal Subtests and Performance Subtests
WAIS - III

• Verbal Subtests

 Vocabulary - define words

 Similarities - how are an airplane and a car alike

 Arithmetic - simple operations

 Digit Span - digits in STM capacity

 Information - who was Martin Luther King, Jr.?

 Comprehension - why are there taxes?
WAIS - III

- Performance Subtests (nonverbal)
 - Picture Completion - what is missing?
 - Digit-Symbol Coding
 - Block Design
 - Matrix Reasoning
 - Picture Arrangement - order pictures
IQ = Intelligence Quotient

- give test to normal children at multiple ages
- mental age (MA) vs. chronological age (CA)

IQ = \(\frac{MA}{CA} \times 100 \)
Average = 100
Standardized Test

• standardized sample - random population
• normal distribution
• norming (raw score vs. standardized score)

mean = 100 standard deviation = 15 for WAIS

67% of people are +/- 1sd (85-115); more than 2sd = 4.54%

Age norming - on 6th birthday - move from 120/100 - 40 year-old like undergrad raw score = 230 IQ
Top 2% = Mensa

< 70 a big problem
RELIABILITY & VALIDITY

- Reliable - same score on two occasions
- Valid - measures what it is supposed to measure
VALIDITY

• IQ - correlates with GPA in high school and college, job success, salary, stable marriages, staying out of jail, longevity

• 25% of variation
 (personality, education, culture)
WHAT DO 15 IQ POINTS MEAN?

100 IQ - average in high school, year or two in community college

115 IQ - at least college, white collar

85 IQ - dropping out of high school, skilled labor
Relationship between IQ and income and percentage of women having illegitimate children, for siblings from the same stable, middle-class family who differ in IQ.

<table>
<thead>
<tr>
<th>IQ Group</th>
<th>Income</th>
<th>Illegitimacy Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very bright siblings (120+)</td>
<td>$70,700</td>
<td>2</td>
</tr>
<tr>
<td>Bright siblings (110-119)</td>
<td>$60,500</td>
<td>10</td>
</tr>
<tr>
<td>Reference group (90-109)</td>
<td>$52,700</td>
<td>17</td>
</tr>
<tr>
<td>Dull siblings (80-89)</td>
<td>$39,400</td>
<td>33</td>
</tr>
<tr>
<td>Very dull siblings (<80)</td>
<td>$23,600</td>
<td>44</td>
</tr>
</tbody>
</table>
Examples of Rise in IQ Test Scores ("Flynn effect")

- Mean scores by Americans on Stanford-Binet and Weschler IQ tests
- Mean scores by Dutch males on Raven's Progressive Matrices

Image by MIT OpenCourseWare.
Generational Increases in Intelligence Scores

(James) Flynn effect - Raven’s Progressive Matrices - IQ scores going up 3 points every 10 years

- born in 1930 - IQ 100
- child - 108
- grandchild - IQ 120 (standard deviation higher)

(100 IQ today - grandparent IQ 82)

1900 mean IQ of 70????

daily life? nutrition? reasoning?
WHERE ARE THE GAINS?

• WISC 10 subtests
 - small gains - vocabulary, general knowledge, arithmetic
 - large gains - similarities
 “In what way are dogs and rabbits alike?”
 “both mammals” (abstract/taxonomic)
 “you use dogs to hunt rabbits”
 (functional)
ABSTRACT THINKING

• Kpelle Tribe - Liberia
 sort basket of food, tools, containers, clothing

 functional pairings - potato and knife
 how would a fool do it?
 taxonomic categories
INTELLIGENCE TESTS

• value attached to a specific time and a specific test
• constant re-norming to set each subtest to population mean of 100
• 70 as cut-off for mental retardation - WISC-III comes out in 1991, number labeled mentally retarded doubled
MODELS OF INTELLIGENCE

• psychometric analysis of subtests
• positive correlation among subtests
• Spearman - “g” - general intelligence
 “s” - specific intelligence
• Thurstone - 56 tests - 7 primary mental abilities (verbal, spatial, etc.)
• Cattell & Horn
 fluid intelligence - novel tasks
 crystallized intelligence - known information
Spearman's Theory of Intelligence

\[g \]

\[g = \text{general intelligence} \]

\[s = \text{specific intelligence} \]
Fluid vs. Crystallized Intelligence

Content removed due to copyright restrictions. See lecture video.

Reference: p. 10 in
(Companion content for textbook Western, D. Psychology 3/e, Wiley, 2002.)
Content removed due to copyright restrictions. See lecture video.

Reference: Fig. 10.11 in Gray, P. O. *Psychology* 5/e, Macmillan, 2006.
http://books.google.com/books?id=o6m9AyzSbAkC&lpg=PA369&pg=PA369#v=onepage&q&f=false
MODELS OF INTELLIGENCE

- psychometric analysis of subtests
- positive correlation among subtests
- Carroll - Three-stratum theory (in 1993 from 450 studies)
 - g, 8 specific factors, more factors
 - all levels contribute to task performance
 - but “g” remains best predictor in real life
EMOTIONAL INTELLIGENCE EQ

- Salovey - perceiving emotion, facilitating thought with emotion, understanding emotion, managing emotion
Theory of Multiple Intelligences

Gardner

• patients, development, special skills
• Linguistic, Spatial, Music, Logical-Mathematical, Bodily-Kinesthetic, Intrapersonal, Interpersonal, Naturalist, Existential

• profile of intelligences
• ? Measurement, skills
Intelligence: Mental & Neural Mechanisms

• Mental Speed
 high correlation between IQ and simple reaction time speed, speed of simple perception of line lengths

• Working Memory
 holding goal-relevant information in mind
Frontal cortex

Dorsal-lateral prefrontal

Temporal lobe

Auditory cortex

Parietal lobe

Occipital lobe

Visual cortex

Cerebellum

Image removed due to copyright restrictions. See lecture video.

Raven’s Progressive Matrices

Fig. 1. A multidimensional scaling solution illustrating the intercorrelations among various ability tasks is shown in this idealized model. The Raven's task occupies the center of the model. Complex tasks such as Necessary Arithmetic operations and Verbal Analogies are shown to be near the Raven's task, indicating that performance on these tasks are highly correlated despite their differences in content. The subsequent contours contain tasks that show less correlation to the tasks near the center of the model and cluster more as a function of content area with separate clusters for figural, numerical, and verbal tasks. Tasks involving different content are separated.

Raven’s Progressive Matrices

Image removed due to copyright restrictions. See lecture video.

Fig. 2. Significant activations for three contrasts, rendered onto canonical T1-weighted brain image of SPM99. (A) Spatial high-g minus spatial low-g ($P < 0.05$ corrected for multiple comparisons). (B) Verbal high-g minus verbal low-g ($P < 0.05$ corrected). (C) Circles minus spatial low-g ($P < 0.001$ uncorrected).
N-Back Task

Greater Frontal Activation with Larger N-Back

3-Back Task

Fig. 1. Behavioral protocol, three-back task. Single capital letters represent task stimuli, which were either all words or all faces for a given scanning run. Blocks of task trials are separated by blocks of fixation (dash).

Fig. 3. Regions in which gF predicted lure-trial activity, using a priori (red) and whole-brain (yellow) search criteria, shown on the folded surface of a standard brain⁴⁹. From left to right: left lateral, left medial, right medial and right lateral views. The corresponding lateral cerebellar surface is shown below each lateral cortical surface. Voxels meeting the a priori threshold outside of the search space are not shown.
GREATER DEMAND ON BRAN RESOURCES FOR LOWER IQ INDIVIDUALS

LOWER IQ (88-110)
HIGHER IQ (119-126)
Intelligence: Nature & Nurture

• identify genes
• identify experiential factors
• identify gene x environment interactions
• twin studies (shared genes)
SNPs - *single nucleotide polymorphisms*

- DNA sequence variation of a single nucleotide adenine (A), thymine (T), cytosine (C), guanine (G)
- at least 1% of the population
- make up 90% of human genetic variation
- constant from generation to generation
Two diagrams explaining Wisconsin Card Sorting Task removed due to copyright restrictions.

See lecture video.
Also refer to http://en.wikipedia.org/wiki/Wisconsin_card_sort

See lecture video.
Catechol-O-Methyltransferase (COMT) (Egan et al., PNAS, 2001)

- risk factor for schizophrenia
- COMT metabolizes released dopamine (DA)
- single polymorphism – valine to methionine at codon 108/158 (val/val vs. val/met)
- Wisconsin Card Sorting Task (WCST)
- fMRI – N-back: 0-back & 2-back
N-Back Task

Increasing Prefrontal Activation for Increasing N-Back

Val/Val > Val/Met > Met/Met: More activation = working harder to achieve same performance

Fig. 2. Effect of COMT genotype on fMRI activation during the two-back working memory task. Regions showing a significant effect of genotype on fMRI activation (voxelwise $P < 0.005$) are in red (shown clockwise from upper left in right lateral, left lateral, right medial, and left medial views, respectively). In dorsolateral prefrontal cortex (e.g., Brodmann area 46; $x = 56$, $y = 32$, $z = 12$; cluster size = 47; $Z = 2.55$) and anterior cingulate (e.g., Brodmann 32; $x = 6$, $y = 50$, $z = 8$; cluster size = 77; $Z = 2.36$), Val/Val individuals showed a greater fMRI response (and by inference, greater inefficiency, as performance is similar) than Val/Met individuals who have greater activation than Met/Met individuals. Post hoc analysis of genotype group contrasts confirmed these significant relationships in dorsolateral prefrontal and cingulate cortices across all groups.

Fig. 3. Effect of COMT genotype on fMRI activation during the two-back working memory task in a second group of subjects. Again, Val/Val individuals showed greater activation (and by inference greater inefficiency) than Val/Met individuals who showed less efficiency than Met/Met individuals in the dorsal prefrontal cortex and several other locales.
Intelligence: Nature & Nurture
Intelligence: Nature & Nurture

• twin studies (shared genes)
• behavioral genetics
• heritability
 variability due to genetics
 height may be 90% heritable in US
• twin studies
 monozygotic - same genes
 dizygotic - about half the genes
Fraternal and Identical Twins

Image by MIT OpenCourseWare.
Unrelated persons, reared together

Foster parent and child

Parent and child living together

Brothers and sisters, reared apart

Brothers and sisters, reared together

Identical twins, reared apart

Identical twins, reared together

Correlation Between IQ Scores for People with Various Relationships

Correlation between IQ scores
Intelligence: Nature & Nurture

- heritability = about .50

- environmental influences
 - breastfeeding
 - birth weight
 - birth order & family size
Intelligence: Nature & Nurture

• 3000 people followed from birth to young adulthood - breastfeeding for at least 6 months correlated with 5-7 point IQ gain
IQ vs. Birth Weight

Mean IQ score

Birth weight (kg)

2.0-2.49 2.5-2.99 3.0-3.49 3.5-3.99 4.0-4.49 >=4.5

90 92 94 96 98 100 102 104

Genetic diversity affects heritability

Height is 90% heritable

Japanese men are 3 inches taller in US than in Japan

Image by MIT OpenCourseWare.
Relation between birth order and IQ score. Mean IQ scores for male conscripts, first-, second-, and thirdborn in Norway to mothers with single births only and first birth from 1967 through 1976, according to birth order and number of elder siblings who died in infancy (age < 1 year). Scores are adjusted for parental education level, maternal age at birth, sibship size, birth weight, and year of conscription. Error bars show 95% confidence intervals (CIs). Reference: birth order one.
Birth Order
Family Size & Raven scores

Fig. 1. Mean Raven class score by birth order within family size (F.S.) across the population ($N = 386,114$).

Source: Belmont, L, and F. A. Marolla. *Science* 182, no. 4117 (1973): 1096-101. © AAAS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
FAMILY DYNAMICS OF INTELLECTUAL DEVELOPMENT

• birth order, family size (Zajonc)
• confluence model
 first born exposed only to adult language
 second born to parents plus first born, etc.
 also opportunity to tutor younger sibs
FAMILY DYNAMICS OF INTELLECTUAL DEVELOPMENT

• birth order, family size (Zajonc)
• confluence model

1st - $(30 + 30 + 0)/3 = 20$
2nd - $(30 + 30 + 4 + 0)/4 = 16$
3d - $(30 + 30 + 7 + 3 + 0)/5 = 14$

test at 8
1st - $(30 + 30 + 8 + 4)/4 = 18$
2nd - $(30 + 30 + 12 + 8)/4 = 20$
Birth Order and Iowa Basic Skills Scores
The birth order scale is inverted such that higher numerical values represent lower birth ranks. ITBS = Iowa Tests of Basic Skills; ITED = Iowa Test of Educational Development.

EARLY EXPOSURE TO LANGUAGE

• Hart & Risley - record each month for 2.5 years one full hour of every word spoken at home between parent and child in 42 families, categorized as professional, working class, or welfare families (SES) - code and analyze every utterance in 1,318 transcripts - 30,000 pages

Key findings

• variation in children’s IQ and language ability related to amount parents speak to children
• children’s academic success at ages 9-10 related to amount of talk heard at ages 0-3
EARLY EXPOSURE TO LANGUAGE

• by age 3, cumulative vocabulary was 1100 words in professional family, 750 in working class family, 500 in welfare family
• welfare family = 616 words/hour; working class family = 750 words/hour; professional family = 2153 words/hour
• by age 3, vocabulary used was larger in children of professional parents than welfare parents
• 300 words more per hour for professional than welfare parents
• extrapolated to a year - child in professional family hears 11 million words vs. 3 million in welfare family
• strong correlation for children at age 9 in IQ
Training Up Your IQ

Jaeggi et.al. PNAS 2008

- 34 trained subjects, 35 controls
- daily training (between 8 and 19 days), skipping weekends, 25 minutes per day
- trained adaptively on dual n-back task;
- tested on Raven’s Progressive Matrices/BOMAT
Training Up Your Working Memory

Training Up Your IQ

Copyright © 2008 National Academy of Sciences, U.S.A.
Intelligence: Group Differences

- history of racism, sexism
 US immigration Act of 1924
 “biologically weak stocks”
 Italians, Jews from Europe

99.9% genetic similarity - is “race” a biologically meaningful category?
Black-White Gap in US

- infancy - no difference
- age 4 - 4.5 points difference
- ages 4-24, 0.6/year, 83.4
- children fathered by black American GIs in Germany (WWII) brought up by German mothers same IQ as children of white American GIs and German mothers
- median household income
 - white ($50,700); black ($32,000); Hispanic ($37,800)
Stereotype Threat

• Claude Steele
 verbal GRE items
 blacks & whites
 “laboratory experiment”
 - equal scores
 “test of intelligence”
 - worse performance
 - by blacks
• List race
 laboratory experiment –
 worse performance by blacks

Stereotype Threat

threat that others' judgments or one's own actions will confirm negative stereotypes about one's group

• women on math tests
• old people
• homosexual men
• athletic ability

• effects are greater with stronger group identification, importance of ability, or personally stigmatized
The Achievement Gap

- “Nat'l Assessment of Ed. Progress (NAEP) also known as ‘the Nation's Report Card,’ is the only nationally representative and continuing assessment of what America's students know and can do in various subject areas…”

- In 2004, NAEP administered the latest long-term trend assessment to approximately 75,000 students at ages 9, 13, and 17 in public and nonpublic schools throughout the nation.

NAEP trends in average mathematics scores and score gaps

NAEP trends in average reading scores and score gaps
Does Stereotype Threat Intervention Decrease the Achievement Gap?

- 119 African American and 124 white 7th graders from middle- to lower-class families at a suburban northeastern middle school
- Affirmation: choose a value from a list and write an in-class essay about why the chosen value is important to you
- Control: choose a value from the same list and write an in-class essay about why the chosen value might be important to someone else
- African Americans in affirmation group had G.P.A.s .30 pts higher than their control counterparts, but no effect was seen for the white students in the affirmation group…

Affirmation reduced the achievement gap by 40%!

Gauss’s modular arithmetic
Take test (pretest)
Can earn monetary award with partner; partner had already improved;
Performance to be videotaped and evaluated;
(pressure/anxiety)
10 minutes
- Control = sit quietly (7% worse)
- Expressive = write about thoughts/feelings (4% better)
- Unrelated writing (7% better)

Ramirez & Beilock, Science, 2011
Entity vs. Growth/Incremental

• how much does ability come from genes or the past (entity) vs. effort/practice (growth)?
• Carol Dweck
Implicit Theories of Intelligence Sample Questions

1. You have a certain amount of intelligence, and you really can’t do much to change it.
2. Your intelligence is something about you that you can’t change very much.
3. You can learn new things, but you can’t really change your basic intelligence.
Entity vs. Growth/Incremental

- theory of intelligence & adolescents’ mathematics achievement
- belief that intelligence can grow associated with gains on math grades
- belief that intelligence is fixed associated with no gains on math grades

Source: Blackwell, L. S., K. H. Trzesniewski, and C. S. Dweck. *Child Development* 78, no. 1 (2007): 246–63. © John Wiley And Sons Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Perry Preschool Study – Lifelong Success After Fleeting Test Score Gains

• followed into adulthood 123 low SE children from African American families from around Perry Preschool in Ypsilanti, Michigan, in 1962
• youngsters participating in study were randomly divided into a program group, who received a high-quality, active learning preschool program and home visits, and a no-program group, who received no preschool program
• status of the two groups assessed annually from ages 3 to 11, at ages 14-15, at age 19, age 27 and again at age 40
• rare random-assignment, longitudinal study
Perry Preschool IQ Over Time

Program benefits seem to disappear over time, but...
Major Benefits in Important Life Outcomes

<table>
<thead>
<tr>
<th>Major Findings: High/Scope Perry Preschool Study at 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program group</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Arrested 5+ times by 40</td>
</tr>
<tr>
<td>Earned $20K+ at 40</td>
</tr>
<tr>
<td>Graduated regular high school</td>
</tr>
<tr>
<td>Basic achievement at 14</td>
</tr>
<tr>
<td>Homework at 15</td>
</tr>
</tbody>
</table>

9.00SC Introduction to Psychology
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.