Single sample hypothesis testing,
II
9.07
3/02/2004
Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data snooping
• What do our results mean?
• Decision theory and power
Brief review

• Null and alternative hypothesis
 – Null: only chance effects
 – Alternative: systematic + chance effects
• Assume the null is true
• Given this assumption, how likely is it that we’d see values at least as extreme as the ones we got?
• If it’s highly unlikely, reject the null hypothesis, and say the results are statistically significant.
 – The results are due to a combination of chance and a systematic effect.
Key Concepts

• H_0 and H_a are contradictory (mutually exclusive)

• Support for H_a can only be obtained indirectly -- by rejecting H_0

• Rationale:
 – We can never prove anything true, but we can prove something false
 – We know the value of the parameter given H_0 but not given H_a
Why bother with H_a at all?

- The alternative hypothesis describes the condition that is contrary to the null hypothesis, and this can be directional or non-directional

 - **Directional**: The effect only occurs in a specific direction -- increases or decreases

 - **Non-directional**: The effect may be greater or less than a population parameter
Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data snooping
• What do our results mean?
• Decision theory and power
A Tale of Two Tails

• Directional hypotheses are called one-tailed
 – We are only interested in deviations at one tail
 of the distribution

• Non-directional hypotheses are called two-tailed
 – We are interested in any significant deviations
 from H_0
The p-value for a test of $H_0: \mu = \mu_0$ against:

- $H_a: \mu > \mu_0$ is prob
- $H_a: \mu < \mu_0$ is prob
- $H_a: \mu \neq \mu_0$ is prob

Figure by MIT OCW.
How do you decide to use a one- or two-tailed approach?

- A one-tailed approach is more liberal -- it is more likely to declare a result significant.
 - $t_{crit} = 1.69$ 5%, one-tailed
 - $t_{crit} = 2.03$ 5%, two-tailed
- There’s no one right answer as to which test to use. People will debate this point.
One Tail or Two? The moderate approach:

- If there’s a strong, prior, theoretical expectation that the effect will be in a particular direction (A>B), then you may use a one-tailed approach. Otherwise, use a two-tailed test.
- Because only an A>B result is interesting, concentrate your attention on whether there is evidence for a difference in that direction.
 - E.G. does this new educational reform improve students’ test scores?
 - Does this drug reduce depression?
Examples of the moderate approach

• Is the age of this class different than the average age at MIT?
• Do you pay less for an education at a state university than you do at an Ivy League college?
• Is this class more boring than the norm for an MIT class?
Age Distribution

![Graph showing age distribution with probability density on the y-axis and age on the x-axis. The graph is bell-shaped, indicating a normal distribution.]
Cost of an Ivy Education
Number of Doodles
One tail or two? The moderately conservative approach:

• The problem with the moderate approach is that you probably would actually find it interesting if the result went the other way, in many cases.
 – If the new educational reform leads to worse test scores, we’d want to know!
 – If the new drug actually increases symptoms of depression, we’d want to know!
One tail or two? The moderately conservative approach:

• Only use a one-tailed test if you not only have a strong hypothesis about the directionality of the results (A>B) but if it could also be argued that a result in the “wrong tail” (A<B) is meaningless, and might as well be due to chance.

• Put another way, only use a one-tailed test if you would not have been tempted, if the result went the “wrong” way, to switch to a two-tailed test (or switch the direction of your one-tailed test).

• It’s tough to meet this criterion.
The moderately conservative approach: a possible example

• It’s known how well students typically do on an intro statistics class.
• You test a new self-paced study guide, in addition to the instruction the students usually get, and have reason to believe this will improve how well they do in class.
• You might well consider any evidence that the students do worse as simply due to chance. After all, the students are getting the exact same instruction as they usually do – the study guide is extra.
• The moderately conservative approach would allow a one-tailed test in this case.
One tail or two: The conservative approach

• Always use two-tailed tests.

• More on one- vs. two-tailed tests later in the lecture.
Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data snooping
• What do our results mean?
• Decision theory and power
Significance testing for small samples

- z-test is for known standard error, or large sample size (N>30)
- As you might imagine, for small sample sizes, we can again use the t-distribution instead, resulting in a t-test.
Example t-test

• A researcher needs to calibrate a spectrophotometer used to measure carbon monoxide (CO) concentration in the air.
• This is done by measuring the CO concentration in a special manufactured gas sample (“span gas”), known to have a precisely controlled concentration of 70 ppm.
• If the machine reads close to 70 ppm, it’s ready for use. If not, it needs to be adjusted.
Spectrophotometer calibration

• One day the technician makes five readings on the span gas: 78, 83, 68, 72, 88.
• Can these readings have occurred by chance, if the machine is set properly, or do they show bias, i.e. that the machine needs to be adjusted?

• $H_0: \mu = 70$ ppm
• $H_a: \mu \neq 70$ ppm
Calculate the test statistic

• As before (with the z-test) we calculate the test statistic,
 \[t_{obt} = \frac{\text{observed} - \text{expected}}{\text{SE}} \]
• Under \(H_0 \), expected = \(\mu = 70 \) ppm
• Observed = \(m = 77.8 \) ppm
• We don’t know the SE of the mean, given \(H_0 \), but we can estimate it by \(\text{SD}/\sqrt{\text{N}} \). But for this small sample size (\(N=5 \)), we then need to use a t-test instead of a z-test.
• \(\text{SD} \approx 8.07 \) ppm
 – Note this is the SD estimate where we divide by \(N-1 \), not \(N \)
Calculate the test statistic

- \(m = 77.8 \text{ ppm, } SE = \frac{8.07}{\sqrt{5}} \approx 3.61 \text{ppm} \)
- \(t_{\text{obt}} = \frac{77.8 - 70}{3.61} \approx 2.2 \)
Find the p-value

- \(t_{\text{obt}} = 2.2, \text{ d.f.} = 4 \)
- From the table in the back of your book, it looks like we’re dealing with the 5% column.

<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>10%</th>
<th>5%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.08</td>
<td>6.31</td>
<td>31.82</td>
</tr>
<tr>
<td>2</td>
<td>1.89</td>
<td>2.92</td>
<td>6.96</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>2.35</td>
<td>4.54</td>
</tr>
<tr>
<td>4</td>
<td>1.53</td>
<td>2.13</td>
<td>3.75</td>
</tr>
<tr>
<td>5</td>
<td>1.48</td>
<td>2.02</td>
<td>3.36</td>
</tr>
</tbody>
</table>
Find the p-value

- However, this 5% is the area under one tail of the t-distribution.
- Recall the alternative hypothesis:
 - \(H_a: \mu \neq 70 \text{ ppm} \)
 - We are interested in whether the spectrophotometer is off in either direction from 70 ppm.
 - This means we should be doing a 2-tailed t-test.
 - Note your book does a 1-tailed test, which doesn’t really match \(H_a \).
- \(p = 2(0.05) = 0.10 \)
- This isn’t much evidence against the null hypothesis, so we might decide not to calibrate.
Report the results

• “The spectrophotometer readings (M=77.8, SD=8.07) were not significantly different from those expected from a calibrated machine (t(4)=2.2, p=0.10, two-tailed).”
Outline

- Very brief review
- One-tailed vs. two-tailed tests
- Small sample testing
- Significance & multiple tests II: Data snooping
- What do our results mean?
- Decision theory and power
Significance and multiple tests (from the last lecture)

• Point of testing is to distinguish between real differences and chance variation.

• Does statistical significance mean that the result cannot be explained by chance variation?
 – No. Once in a while, an event that is unlikely to occur due to chance can actually occur.
 – We talked about this with confidence intervals – roughly 1 in 20 times, the true mean fell outside of the 95% confidence interval.
Significance and multiple tests

• Put another way, a researcher who runs 100 tests can expect to get 5 results which are “statistically significant” (p<0.05), and one which is “highly significant” (p<0.01), even if the null hypothesis is correct in every case.

• You cannot tell, for sure, whether a difference is real or just coincidence.
 – This is why science requires replicable results. If n independent tests all show a statistically significant result, the probability of this happening due to chance is very small.
A special case of multiple tests: data snooping

• Data snooping = deciding which tests to do once you’ve seen the data.

• Examples:
 – Disease clusters
 – One-tailed vs. two-tailed tests
Data snooping: Disease clusters

- Liver cancer is rare. The chance of having 2 or more cases in a given town in a year (a “cluster”) with 10,000 inhabitants is about 0.5%
- A cluster of liver cancer cases causes a researcher to search for causes, like water contamination.
- But, with a bunch of small towns of this size, looked at over a 10-year time period, it’s likely you’ll see a few clusters like this. 100 towns x 10 years = 1000 cases. 0.005*1000 = 5.
Data snooping: One-tailed vs. two-tailed significance testing

• This is where you look at your data to see whether your sample average is bigger or smaller than expected, before you choose your statistical test.
• $H_0: \mu=50$
• $m=65$, so, uh, $H_a: \mu > 50$. So, I’ll do a one-tailed t-test looking at the upper tail…
• This is not allowed, and many statisticians recommend always using two-tailed tests, to guard against this temptation.
Consequences of data snooping: 1-tailed vs. 2-tailed tests

• Suppose $H_0: \mu = 20$.
• You set $\alpha=0.05$ as your criterion, and initially plan a 1-tailed test ($H_a: \mu > 20$).
• Running the experiment, you find that $m=15$. Oops, you switch to a 2-tailed test to see if this is significant.
• What is p?
Data snooping & the switch to a 2-tailed test

• Reject the null hypothesis if z_{obt} falls in the 5% region of the upper tail (1-tailed test)

• Or, switching to a 2-tailed test with $\alpha=0.05$, if it falls in the 2.5% region of the lower tail.

• Thus, if z_{obt} passes the test, you should report $p<0.075$, not $p<0.05$.
 – Probably the researcher incorrectly reports $p<0.05$.

• This is like a “one-and-a-half” tailed test.
Switching to a 2-tailed test
Data snooping and the switch to a 1-tailed test

• Similarly, you might start off assuming you’ll do a 2-tailed test, with $\alpha=0.05$.
 – 2.5% in each of the two tails
• But when you get the data, z_{obt} isn’t big enough to fall in the 2.5% region of the upper tail, but is big enough to fall in the 5% region of the upper tail.
• You decide to switch to a 1-tailed test.
• Again, this amounts to a one-and-a-half tailed test.
 – Reject the null hypothesis if z_{obt} falls in the 2.5% region of the lower tail (2-tailed test),
 – Or, switching to a 1-tailed test, if z_{obt} falls in the 5% region of the upper tail.
Correcting for one- vs. two-tailed tests

• If you think a researcher has run the wrong kind of test, it’s easy to recalculate the p-value yourself.

• $p(\text{one-tailed}) = \frac{1}{2} p(\text{two-tailed})$
• $1.5\; p(\text{one-tailed}) = p(1.5\text{-tailed})$
• Etc.
A special case of multiple tests: data snooping

- If you’re going to use your data to pick your statistical test, you should really test your conclusions on an independent set of data.
- Then it’s like you used *pilot* data (or other previous experiments) to form your hypothesis, and tested the hypothesis independently on other data. This is allowed.
Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data snooping
• What do our results mean?
• Decision theory and power
What do our results mean?

• Significance
• Importance
• Size of the effect
• Does the difference prove the point?
Was the result significant?

• There is no true sharp dividing line between probable and improbable results.
 – There’s little difference between $p=0.051$ and $p=0.049$, except that some journals will not publish results at $p=0.051$, and some readers will accept results at $p=0.049$ but not at $p=0.051$.
Was the result important?

- “Significant” does not mean you care about it.
- Some of what “important” means has to do with what you’re studying.
Importance and what you are studying

• Suppose you give children a vocabulary test consisting of 40 words that the child must define. 2 points are given for a correct answer, 1 point for a partially correct answer.

• City kids, ages 6-9, are known to average 26 points on this test.

• Study 2500 rural kids, ages 6-9.

• Rural kids get an average of 25 points. This difference from the expected 26 points is highly significant.
 – We would probably really do a two-sample test here, not a one-sample test. But we don’t cover that until next week…
Importance and what you are studying

• But is the result important?
• The z-test only tells us that this one point difference is unlikely to have occurred by chance.
• Suppose you studied the entire population, and found this difference between rural and big city kids. What would this difference mean?
 – A one-point difference in average scores only amounts to partial credit on one word out of a test of 40 words.
 – If anything, the investigators have provided evidence that there is almost no difference between rural and big city kids on this test.
Was the result important?

• The p-value of a test depends upon the sample size.
• \(z_{obt} = \frac{\text{observed} - \text{expected}}{\text{SE}} \) (same idea with \(t_{obt} \))
• SE has a \(\sqrt{N} \) in the denominator – as \(N \) increases, SE decreases, and \(z_{obt} \) \((t_{obt}) \) increases.
 – As \(N \) increases, the same difference between observed & expected becomes more significant.
• An important result can be non-significant just because you didn’t take a big enough sample.
• A very small, unimportant result can be significant just because the sample size is so big.
Picking N

• As with confidence intervals, we can estimate what sample size we should use, for a given anticipated effect size.

• For the vocabulary test example, suppose an effect is only important if the rural kids’ scores are at least 10 points different from the city kids’ score of 26.

• How many rural kids should we give the vocabulary test to, if we want to be able to detect a significant difference of this size, with $\alpha=0.01$?
Picking N

• For $\alpha=0.01$, $z_{\text{crit}} = 2.58$
• $z_{\text{obt}} = (\text{observed} - \text{expected})/SE$
• $SE = SD/sqrt(N)$
 – Need to approximate SD, either from previous data, or just by taking a guess.
 – Here, we guess SD = 10
• $z_{\text{obt}} = 10/(10/sqrt(N)) = sqrt(N)$
• A difference of 10 will be highly significant if $sqrt(N) > 2.58$, which implies we need a sample size of at least 2.58^2, i.e. $N \geq 7$.
 – Note in the example, $N=2500$!
Does the difference prove the point the study was designed to test?

• No, a test of significance does not check the design of the study. (There are tons of things that could go wrong, here.)
 – Is it a simple random sample, or is there some bias?
 • Did our poll call only phone numbers in the phonebook?
 – Could the result be due to something other than the intended systematic effect?
 • Did drug study subjects figure out whether they had been given the true drug vs. placebo?
 – Is the null hypothesis appropriate?
 • Does it assume that the stimulus levels are randomly selected, when actually they follow a pattern the subject might notice?
Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data snooping
• What do our results mean?
• Decision theory and power
Decisions, Decisions...

- Hypothesis testing is an example of the application of decision theory
- We want to use the evidence from our sample to decide between two hypotheses
- This involves a trade-off between different types of errors
Decision theory and tradeoffs between types of errors

• Think of a household smoke detector.
• Sometimes it goes off and there’s no fire (you burn some toast, or take a shower).
 – A false alarm.
 – A Type I error.
• Easy to avoid this type of error: take out the batteries!
• However, this increases the chances of a Type II error: there’s a fire, but no alarm.
Decision theory and tradeoffs between types of errors

• Similarly, one could reduce the chances of a Type II error by making the alarm hypersensitive to smoke.
 – Then the alarm will be highly likely to go off in a fire.
 – But you’ll increase your chances of a false alarm = Type I error. (The alarm is more likely to go off because someone sneezed.)

• There is typically a tradeoff of this sort between Type I and Type II errors.
<table>
<thead>
<tr>
<th></th>
<th>No fire</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>No alarm</td>
<td>No error</td>
<td>Type II</td>
</tr>
<tr>
<td>Alarm</td>
<td>Type I</td>
<td>No error</td>
</tr>
</tbody>
</table>

A table
A table

<table>
<thead>
<tr>
<th>Decision based on sample</th>
<th>Truth about the population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ho true (No fire)</td>
</tr>
<tr>
<td>Accept Ho (No alarm)</td>
<td>No error (correct null response)</td>
</tr>
<tr>
<td>Reject Ho (Alarm)</td>
<td>Type I (false alarm)</td>
</tr>
</tbody>
</table>
More on the tradeoff between Type I and Type II errors

• Consider the null hypothesis, \(H_0: \mu = \mu_0 \)

Sampling distribution of the mean, \(m \), given true mean \(\mu_0 \).
More on the tradeoff between Type I and Type II errors

- And the alternative:

 - Sampling distribution of the mean, m, if there is a real, systematic effect.

 - Here’s the mean if there’s a systematic effect. Often we don’t know this.
More on the tradeoff between Type I and Type II errors

• We set a criterion for deciding an effect is significant, e.g. $\alpha=0.05$, one-tailed.
More on the tradeoff between Type I and Type II errors

• Note that α is the probability of saying there’s a systematic effect, when the results are actually just due to chance. A Type I error.
More on the tradeoff between Type I and Type II errors

- Whereas β is the probability of saying the results are due to chance, when actually there’s a systematic effect as shown. A Type II error.
More on the tradeoff between Type I and Type II errors

• Another relevant quantity: $1 - \beta$. This is the probability of correctly rejecting the null hypothesis (a hit).
Moving the criterion around changes the \% of false alarms (\(\alpha\)) and “hits” (1-\(\beta\))

- A natural tradeoff between Type I and Type II errors.

- This is one reason we test \(x \geq 14\) instead of \(x=14\) (binomial distribution). The latter reduces false alarms, but increases the number of misses.

Figure by MIT OCW.
Type I and Type II errors

- Hypothesis testing as usually done is minimizing α, the probability of a Type I error (false alarm).
- This is, in part, because we don’t know enough to maximize $1-\beta$ (hits).
- However, $1-\beta$ is an important quantity. It’s known as the *power* of a test.
Statistical power

• The probability that a significance test at fixed level α will reject the null hypothesis when the alternative hypothesis is true.

• In other words, power describes the ability of a statistical test to show that an effect exists (i.e. that H_o is false) when there really is an effect (i.e. when H_a is true).

• A test with weak power might not be able to reject H_o even when H_a is true.
An example

• Can a 6-month exercise program increase the mineral content of young women’s bones? A change of 1% or more would be considered important.

• What is the power of this test to detect a change of 1% if it exists, given that we study a sample of 25 subjects?
 – Again, you’d probably really run this as a two-sample test…
How to figure out the power of a significance test (p. 471)

- Ho: \(\mu=0\% \) (i.e. the exercise program has no effect on bone mineral content)
- Ha: \(\mu>0\% \) (i.e. the exercise program has a beneficial effect on bone mineral content).
- Set \(\alpha \) to 5%
- Guess the standard deviation is \(\sigma=2\% \)
First, find the criterion for rejecting the null hypothesis with $\alpha=0.05$

- $H_o: \mu=0\%$; say $n=25$ and $\sigma=2\%$
- $H_a: \mu>0\%$

- The z-test will reject H_o at the $\alpha=.05$ level when: $z=(m-\mu_o)/(\sigma/\sqrt{n})$

 \[= (m-0)/(2/5) \geq 1.645 \]

- So $m \geq 1.645(2/5) \Rightarrow m \geq 0.658\%$ is our criterion for deciding to reject the null.
Step 2

• Now we want to calculate the probability that H_o will be rejected when μ has, say, the value 1%.

• We want to know the area under the normal curve from the criterion ($m=0.658$) to $+\infty$

• What is z for $m=0.658$?
Step 2

- Assuming σ for the alternative is the same as for the null, $\mu_a = 1$

 \[z_{crit} = (0.658 - 1)/(2/\sqrt{25}) = -0.855 \]

- $\Pr(z \geq -0.855) = 0.80$

- So, the power of this test is 80%. This test will reject the null hypothesis 80% of the time, if the true value of the parameter $\mu = 1\%$
Distribution of \bar{x} when $\mu=0$

Fail to reject H_0 → Reject H_0

α = 0.05

Distribution of \bar{x} when $\mu=1$

Fail to reject H_0 ← Reject H_0

Power = 0.80

Figure by MIT OCW.
How to increase power

• Increase α
 – Make the smoke alarm more sensitive. Get more false alarms, but more power to detect a true fire.
• Increase n.
• Increase the difference between the μ in H_a and the in μ_o in H_o.
• Decrease σ.