9.13 The Human Brain Class 8
Navigation I

Today:
Quick review of Haxby & MVPA.
I. What do we need to know to get around?
II. The PPA, a region selectively responsive to scenes.
III. The rest of the “scene network”: PPA, RSC, & OPA/TOS
[IV. fMRI Adaptation and what it has told us about the scene network]

Wednesday (Navigation II):
I. The hippocampal map and cells that code for location, borders, heading direction
II. Reorientation
1. Haxby (2001) raised an important empirical challenge to functional specificity of FFA and PPA. What was his challenge?

Selective regions (like FFA) contain information about “nonpreferred” stimuli (e.g. cars vs shoes), so these regions do not care ONLY about preferred category!

2. What kinds of empirical data can provide counterevidence to Haxby’s challenge (say for the FFA)?

Prosopagnosia, electrical stim, TMS all can show causal role of region in processing preferred category only. So pattern information may not be used.

3. How can we use Haxby’s method to test whether the PPA can discriminate beach scenes from city scenes?

1. Functionally localize the PPA Scenes > Objects
2. Collect the pattern of response across voxels in PPA while Ss view:
 - beach scenes. even runs (BE)
 - beach scenes odd runs (BO)
 - city scenes even runs (CE)
 - city scenes odd runs (CO)
3. Now what do I predict if the PPA can discriminate beaches from cities?
 - \(r(\text{within category}) > r(\text{between category}) \)
 - \(r(\text{BE, BO}) + r(\text{CE, CO}) > r(\text{BE, CO}) + (\text{CE, BO}) \)
Multiple Voxel Pattern Analysis (MVPA)

Is the pattern more similar within a category… than between categories?

If \(r(\text{Within}) > r(\text{Between}) \) the region contains information distinguishing cars & chairs!

All we are doing here is asking if there are stably different patterns of response in the region for the two categories.
If there are stably different patterns, then the region has information about, that is can discriminate (or “decode”) those two patterns.

\[
\begin{align*}
 r (\text{within category}) &> r (\text{between category}) \\
 r(\text{BE, BO}) + r(\text{CE, CO}) &> r(\text{BE, CO}) + (\text{CE, BO})
\end{align*}
\]
If you feel shaky on MVPA

Is the pattern more similar within a category… than between categories?

If \(r(\text{Within}) > r(\text{Between}) \)

the region contains info. distinguishing cars & chairs!

1. Watch this video
http://nancysbraintalks.mit.edu/video/multiple-voxel-pattern-analysis
2. Reread Haxby et al (2001) and/or Bryan et al
3. Talk to me or a TA.
4. Shall we do an fMRI analysis problem set?
Today:
I. What do we need to know to get around?
II. The PPA, a region selectively responsive to scenes.
III. The rest of the “scene network”: PPA, RSC, & OPA/TOS
[IV. fMRI Adaptation and what it has told us about the scene network]

Wednesday (Navigation II):
I. The hippocampal map and cells that code for location, borders, heading direction
II. Reorientation
Dead Reckoning in the Tunisian desert Ant

- Ant wanders at random foraging for food (A to B), then goes straight home.
- If the ant is translated to a new location after finding food, he follows the exactly correct vector home (direction and extent).
- Searches for up to an hour for nest, centered on “correct” location.
- How does the ant know the correct vector home without landmarks?
Feats of Animal Navigation

Animals accomplish these extraordinary feats of navigation because they have to, to find:
- food
- mates
- shelter

MIT students too need to be able to find
What is Navigation anyway, and what does it entail?

Two fundamental problems of navigation:

I. Where am I?

II. How do I get from here (A) to there (B)?

For example, if you see this.....
You immediately know: where you are, & where to go if it starts raining, you are hungry, same deal here.....
These judgments rely on specific knowledge of this place. But even if you are in a place you have never been in before....
Even in unfamiliar places, can tell:
What kind of place is this?
Where can we go here?
The Fundamental Problems of Navigation

I. Where am I?

• Recognize a \textit{specific} familiar location

 e.g. this is \textit{my} living room

• Even if unfamiliar: What \textit{kind} of place is this?

 a living room, a city street, a mountain, a desert

• Geometry of current loct’n

 e.g. I am next to long wall of rectangular room

 how would I get out of here?

II. How do I get from here (A) to there (B)?

• If you can see or hear B, go toward it (“beaconing”).

 E.g. head toward lighthouse/foghorn, or landmark.

 like this…..
The Fundamental Problems of Navigation

I. Where am I?
 • Recognize a familiar location
 e.g. this is my living room
 • Even if unfamiliar: What kind of place is this?
 a living room, a city street, a mountain, a desert
 • Geometry of current loc’t’n
 e.g. I am next to long wall of rectangular room

II. How do I get from here (A) to there (B)?
 • If you can see or hear B, go toward it (“beaconing”).
 E.g. head toward lighthouse/foghorn, or landmark.
 Requires no “mental map”.
 But if you cannot see or hear B,….
 • Need a mental map of your world
 an idea first articulated way back…
Evidence for “Cognitive Maps”

• Tolman, Ritchie, & Kalish (1946)

- Rat trained on maze at left, then run on maze at right. When original route is blocked, rat chose path heading toward goal.
- Rats must have some kind of map in their head. And so do you......
What else do you need to know, besides map, starting point, and ending point?

Where am I? How do I get there? Where to go? Close your eyes and plan this route right now. What other info did you need?
The Fundamental Problems of Navigation

I. Where am I?

- **Recognize a familiar location**

 e.g. this is my living room

- **Even if unfamiliar: What *kind* of place is this?**

 a living room, a city street, a mountain, a desert

- **Geometry of current loct’n**

 e.g. I am next to long wall of rectangular room

II. How do I get from here (A) to there (B)?

- **If you can see or hear B, go toward it (“beaconing”).**

 E.g. head toward lighthouse/foghorn, or landmark.

- **Need a mental map of your world…..**

 Where am I in that map, and where is B

- **Also need to know current heading w/ respect to that map**

 to determine necessary heading to get to B

- **What routes are possible from here?**

 “navigational affordances” like doors and halls, getting around barriers

- **Regaining bearings when lost (“reorientation”).**
Today: What is navigation?
I. What do we need to know and do to get around?
II. The PPA, a region selectively responsive to scenes.
III. The rest of the “scene network”: PPA, RSC, & OPA
[IV. fMRI Adaptation and what it has told us about the scene network]

Wednesday:
I. The hippocampal map and cells that code for location, borders, heading direction
II. Reorientation
Scenes > Objects

in 1 subject
PPA in all 9 subjects
Scenes > Objects

Brain scan images © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

“Parahippocampal Place Area” (PPA)
Why does the PPA respond more to scenes than to objects?

Is this a minimal pair?

- high-level visual/semantic complexity
- multiplicity/relative position of objects
- spatial layout

How would we figure out which of these things are driving the response of PPA?
Predictions of PPA Response:

- visual/semantic complexity
- multiplicity of objects
- spatial layout

Furniture > Empty Rooms
Furniture < Empty Rooms
Functional Region of Interest Analysis

- Using one set of “localizer” scans to define PPA (scenes>objects).

- Then measure response in PPA to new conditions:

 Scenes

 Furniture

 Empty Rooms

Images of brain scan, objects, & rooms © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
Images of objects & rooms © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Predictions:

- **visual/semantic complexity**
 - Furniture > Empty Rooms

- **multiplicity of objects**
 - Furniture < Empty Rooms

- **spatial layout**
 - [p<0.01]
Experiment 3

Question: Is the PPA involved in the recognition of a particular scene, or in processes specific to familiar scenes?

To Test: Examine PPA response to MIT versus Tufts scenes in MIT versus Tufts students – can thus counterbalance for specific stimuli.

Result: 1.9 PSC familiar vs. 1.8 PSC unfamiliar, n.s.

Conclusion: The PPA does not do anything that requires knowing the specific place (e.g. planning a route to a distant location in a familiar environment).
Summary of Exps. 1-3

Exp. 1 There is region of parahippocampal cortex that responds more to scenes than objects.

Exp. 2 When all the objects are removed from the scenes, the response is unchanged.

Exp. 3 The PPA responds similarly to familiar & unfamiliar scenes.

The PPA analyzes the **shape** of the local environment.
Parahippocampal Place Area

The shape/geometry of space around you.

And now for the pushback....

Images of brain scans, objects, faces, & rooms © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
So, the PPA likes rectilinear > curvilinear shapes.
Scenes in general are more rectilinear than objs and faces.
So, is the apparent scene selectivity of the PPA just due to a _________ of scenes with rectilinearity?
No! (Main effect? Interaction?)
Nonetheless, might the PPA hold information about rectilinear/curvilinearity?
How would we find out?
Bryan et al (2016)

Figure 4 uses multiple voxel pattern analysis (MVPA) to ask if the PPA (and other ROIs) hold information about rectilinearity/curvilinearity.

What does this cell represent?
Each cell: Correlation r of pattern of response across voxels

What does this index mean?
How much info about rectilinearity of scenes is present in the fROI.

What does this figure show?
PPA does not hold information about rectilinearity of scenes or faces

Annotated figures above © 2016 Bryan, Julian and Epstein. License: CC BY. Source: Frontiers in Human Neuroscience. Voxel images on lower left © unknown. This content is excluded from our Creative Commons license, see https://ocw.mit.edu/fairuse.
1. PPA responds much more to scenes than objects, faces, etc.
2. It responds to the spatial layout information of a scene, not just complexity or the multiplicity of objects.
3. The PPA responds more to boxes than circles, this rectilinearity bias cannot account for scene selectivity.

What is a key question not answered by fMRI studies of the PPA? How might we test that?
How do we know we are in the PPA?

B. Regions that displayed greater fMRI responses to houses than other visual stimuli

D. ECOG response to these categories of images.
Direct Electrical Stimulation of the PPA
(Megevand et al. 2014)

- Electrical stimulation of the PPA (place-selectivity verified by fMRI and iEEG), induced a topographic visual hallucination:
- The patient described seeing indoor and outdoor scenes that included views of the neighborhood he lives in. By contrast, stimulating the more lateral aspect of the basal temporal lobe caused distortion of the patient’s perception of faces.
- How does this finding go beyond the fMRI findings?

The PPA is just one part of the navigation system....
Lecture 8: Navigation I

Today: What is navigation?
I. What do we need to know and do to get around?
II. The PPA, a region selectively responsive to scenes.
III. The rest of the “scene network”: PPA, RSC, & OPA
IV. fMRI Adaptation and what it has told us about the scene network

Wednesday:
I. The hippocampal map and cells that code for location, borders, heading direction
II. Reorientation
Not Just the PPA

Scenes > Objects

How does each region help us navigate?

Hippocampus

Images of brain scans here and on the following pages © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
RSC shows large familiarity effects, PPA small

RSC: relationship to the larger environment

Report of a patient with damage in RSC: "he could recognize buildings and the landscape and therefore understand where he was, but the landmarks he recognized did not provoke directional information about any other places with respect to those landmarks"*
RSC: recognizing a familiar place, getting bearings (location and orientation) with respect to cognitive map.
Is TOS/OPA causally involved in scene perception?

Measure discrimination threshold.

Result:

Zapping OPA disrupts scene discrimination, not face discrimination, causally implicating OPA in scene but not face perception.

Multiple Scene Selective Regions

PPA & OPA/TOS: perceiving the scene you are in, especially spatial layout.

RSC: recognizing a familiar place, getting bearings (location and orientation) w/r respect to cognitive map.

Hippocampus: The Cognitive Map: More on this Wednesday
Today: What is navigation?
I. What do we need to know and do to get around?
II. The PPA, a region selectively responsive to scenes.
III. The rest of the “scene network”: PPA, RSC, & OPA

Wednesday:
I. The hippocampal map and cells that code for location, borders, heading direction
II. Reorientation
Event-Related fMRI Adaptation works even if no clustering

Goal: We want to know if neural populations in a particular region can discriminate between two stimuli.

Example: Do neurons in the FFA distinguish between this:

Suppose: We measure the fMRI response in FFA and find this:

Does that mean that neural populations in the FFA cannot discriminate these two faces?

Or these: all neurons responding equally to both

This neural population discriminates C from T

This neural population does not discriminate

MVPA only works when neurons are clustered spatially on scale of voxels.

Can we tell which is true?

Neural populations in the FFA could have these selectivities:

Photos of a chimp & Donald Trump © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
Event-Related fMRI Adaptation

Basic idea: Any measure that is sensitive to the sameness vs. diff. betwn 2 stimuli can reveal what the system takes to be the same vs. diff.

Example: If brain region X discriminates btwn two similar stimuli, say…. Then if we measure fMRI response in that region to same vs. diff trials:

If we see this: Then region X can discriminate these 2 stimuli. (assuming proper counterbalancing, with TT and CT conditions).

Now we can also ask what images region X “thinks” are the same, e.g.…
Event-Related fMRI Adaptation

Basic idea: Any measure that is sensitive to the sameness vs. diff. between 2 stimuli can reveal what the system takes to be the same vs. diff.

Does region X “think” these are same?
A way to test invariances (like MVPA).

If we see this:
Then region X can discriminate these 2 stimuli.
(assuming proper counterbalancing, with TT and CT conditions).

Now we can also ask what images region X “thinks” are the same, e.g....