Lecture 24: Attention & Awareness

Outline

O. Review of Big Points from Deep Networks Lecture
I. The crux of Attention: capacity limits and selection
 overt vs covert attention
 exogenous versus endogenous attention

II. Brain Mechanisms of Attention
 Attention modulates neural response in multiple regions, including
 LGN, V1, FFA, MT, A1, etc.
 Source of attentional signals is frontal and parietal lobes
 the fronto-parietal attention network (= multiple demand system)
 a very domain-general system (unlike FFA, MT, TPJ, etc)

III. Neural correlates of awareness
 Binocular rivalry
 Attentional blink
Question to Consider

How do you feel about people driving while talking on their cell phones. Is this a good idea?
What if you have a hands-free setup so you don’t have to look down at your phone– is that ok?
Why/why not?

The notion of *processing capacity*, or *resources*:
You cannot think about many different things at once.
The “toaster model” of cognition:
when you plug in the toaster the lights dim.
Which mental processes are “on the same circuit”?
Can you listen to music and read at the same time?
Recognize faces and scenes at the same time?
Let’s try some simple demos….
SEE LECTURE VIDEO FOR DEMO
What This Simple Demo Illustrates

Limited capacity — Only a small amount of information on the retina can be fully processed and used for behavior

Selectivity — We have the ability to filter out unwanted information (e.g., the red letters)…
Probability of reporting “N” is independent of the number of red letters. Only depends on the number of blue letters.
Why is our capacity to process visual information limited?

1. Full analysis of everything in the visual field is impossible. (BUT: Given the massively parallel structure of the human visual system, why can’t we process everything at once?)

2. We can only direct action to one object or portion of the visual field at a time, so having more info might make subsequent processing stages harder. Pike fish preys on sticklebacks, catches stickleback faster if there is only one present than if there are five.
More Evidence for Capacity Limits in Perception

There is so much we don’t see, right before our eyes!
For example...
I will show you a pic for a few seconds…

How richly detailed was your percept?
This is a heated topic in field currently.
Let’s find out more.
The image will blink multiple times, see if you can spot any changes…
What changed?
Selective attention video: [Test Your Awareness: Whodunnit?](#)

Does this kind of thing only happen when it doesn’t really matter?
Commercial airline pilots with thousands of hours of flying experience used a high-quality flight simulator with a head-up display. During one sequence, they came in for a landing under somewhat foggy conditions. They broke through the cloud ceiling and spotted the runway, landing the plane as they usually would. Two of them never saw the other plane that was sitting on their runway and landed right through it.
Attention

A filter that lets attended/selected information in but filters unattended information completely out of awareness.

Two key properties of attention that go hand in hand:
 • capacity limits - we can't efficiently process everything at once.
 • selectivity - so we select a subset of the available information for detailed analysis

Different forms/ways of attending.
An important distinction realized long ago by Helmholtz…..
Helmholtz: Attention is Different from Fixation

"...our attention is quite independent of the position and accommodation of the eyes, and of any known alteration in these organs, and free to direct itself by a conscious and voluntary effort upon any selected portion of a dark and undifferentiated field of view. This is one of the most important observations for a future theory of attention."

Physiological Optics, circa 1860, quoted in James Principles, pg. 414
Overt versus Covert Visual Attention

• “overt attention” - eye movements - change in retinal input
 a very powerful selection mechanism because of the fovea.

We make 2-4 eye movements per second, collecting high resolution information from a surprisingly small subset of the visual world at the fovea.

[Recall sharp dropoff in visual acuity in periphery because of:
 photoreceptor density (cones denser in fovea)
 cortical magnification (more area of V1 devoted to fovea)]

So, eye movements are the MOST powerful way to select.
Watch how finely-tuned our sampling of the visual world is…..
Overt versus Covert Visual Attention

• “overt attention” - eye movements - change in retinal input
 a very powerful selection mechanism because of the fovea

• “covert attention” - no eye movements, only changes in the way the same retinal image is processed.
 Why bother with covert when you have overt?
 other people can see overt, many problems from elevator eyes, looking at name tag, looking at clock
 cannot foveate more than one thing
Distinctions about Visual Attention

• overt versus covert attention

• automatic/stimulus-driven/exogenous attention
e.g. web pop-ups
“pop-out” in visual search

versus controlled/voluntary attention

Big idea: your mental life is not (totally) controlled by the information coming in through your senses, you can chose what to pay attention to (thankfully)!
e.g. deciding to focus on something else when you are hungry or reading an article despite annoying web pop-ups
or, using a cue to determine where to attend….
Exogenous Attention Improves Processing Speed and Accuracy

Valid trial

Invalid trial

Neutral trial

Cue Target

Time ≈ 800 ms

Reaction time (ms)

0

Invalid

Neutral

Valid

Slide Adapted from Michael Cohen
Different Kinds of Attention

How does all this work in the brain?

1. Overt (eye movements) versus covert (no eye movements).

2. Exogenous (or stimulus-driven, or bottom-up) attention “pop-out” vs endogenous (or internally driven or top-down) attention

3. Spatial attention (previous example) versus feature-based attention, e.g.

 find the black vegetable peeler

 find the purple rubber spatula
Lecture 24: Attention & Awareness

Outline

I. The crux of Attention: capacity limits and selection
 overt vs covert attention
 exogenous versus endogenous attention
 spatial versus feature-based

II. Brain Mechanisms of Attention
 Attention modulates neural response in multiple regions, including
 LGN, V1, FFA, MT, A1, etc.
 Source of attentional signals is frontal and parietal lobes
 the fronto-parietal attention network (= multiple demand system)
 a very domain-general system (unlike FFA, MT, TPJ, etc)

III. Neural correlates of awareness
 Binocular rivalry
 Attentional blink
What happens after the cue, but before the stimulus?
Retinotopic cortex (V1/V2)

Att. left > Att. right

Att. right > Att. left
BEFORE a stimulus appears.

Att. left > Att. right

Att. right > Att. left
Priming the brain

+

Att. left > Att. right

Att. right > Att. left
Attention can also increase the strength of a signal related to a stimulus that IS present.

How might we use fMRI to test whether attention can affect the neural response to a face?
Same-diff Task on face, color, or house
Stimuli on screen don’t change
This is a pure attentional effect; the stimuli are identical in all conditions. Similar attentional modulation is seen in MT, PPA, EBA, and retinotopic cortex including V1. Attentional modulation is even seen in the LGN! Other modalities? [skip if no time]
Select Attention Experiment

- **Low** (250 Hz)
- **High** (4000 Hz)

30s

- Attend High
- Attend Low
- Attend High
- Attend Low

What pattern of results would we predict in auditory cortex?

So, responses in LGN, V1, A1, FFA, MT, etc. are all modulated by attention.

What is the source of attentional signals in the brain?

A set of frontal and parietal regions.......
The “Fronto-Parietal Attention Network”

These parietal and frontal regions that are active during:

i) shifting of attention, and attentionally-demanding tasks

ii) Mostly the same as the network engaged by nearly any difficult task (hence “multiple demand”).

~The opposite of domain-specific regions: *domain general!*

When this system is damaged bilaterally, get deficits in shifting attention and in perceptual awareness…
Balint’s syndrome

Lose the ability to attend to multiple locations.
Can only report seeing one object at a time.
“Attentional tunnel vision”
Never voluntarily move their eyes
Normal acuity, depth, motion, and object perception

All this indicates a role of these parietal regions in shifting attention.
Lecture 24: Attention & Awareness

Outline
I. The crux of Attention: capacity limits and selection
 overt vs covert attention
 exogenous versus endogenous attention
 spatial versus feature-based
II. Brain Mechanisms of Attention
 Attention modulates neural response in multiple regions, including LGN, V1, FFA, MT, A1, etc.
 Source of attentional signals is frontal and parietal lobes
 the fronto-parietal attention network (= multiple demand system)
 a very domain-general system (unlike FFA, MT, TPJ, etc)
III. Neural correlates of awareness
 Binocular rivalry
 Attentional blink
How do we Uncouple Perceptual Awareness from just Perception

Attention is one way:
 Same stimulus > different awareness
Here is another…..
Binocular Rivalry and Visual Awareness

Rivalry

Stimulus

Percept

Nonrivalry

Yoked Stimulus

Time (s)

Tong, Nakayama, Vaughan & Kanwisher (1998)
Response in FFA and PPA

Figure showing the percentage MR signal over time for FFA and PPA. The graph displays fluctuations in signal intensity with time in seconds, marked with arrows indicating peaks and troughs. The x-axis represents time in seconds (90 to 195), and the y-axis represents the percentage MR signal (%). Arrows point to specific times where signal changes are observed, labeled as 'F' for FFA and 'H' for PPA. The graph is courtesy of Elsevier, Inc., with a link to the source at www.sciencedirect.com. Used with permission.

Tong, Nakayama, Vaughan & Kanwisher (1998)
Rivalry

House → Face

<table>
<thead>
<tr>
<th>Time from reported perceptual switch (s)</th>
<th>% MR Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8, -4, 0, 4, 8, 12</td>
<td>0.0, 0.2, 0.4, 0.6, 0.8, 1.0</td>
</tr>
</tbody>
</table>

FFA

PPA

Face → House

<table>
<thead>
<tr>
<th>Time from reported perceptual switch (s)</th>
<th>% MR Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8, -4, 0, 4, 8, 12</td>
<td>0.0, 0.2, 0.4, 0.6, 0.8, 1.0</td>
</tr>
</tbody>
</table>

PPA

FFA

Tong, Nakayama, Vaughan & Kanwisher (1998)
Binocular Rivalry and Visual Awareness

Rivalry

Stimulus

Percept

Nonrivalry

Yoked

Stimulus

Time (s)

Tong, Nakayama, Vaughan & Kanwisher (1998)
How do we Uncouple Perceptual Awareness from just Perception

Response of FFA and PPA reflects not the stimulus landing on the retina, but the state of awareness of the subject!

Is there any neural evidence for perceptual representation without awareness?
Maybe…….
Demo: I will flash up a very rapid series of digits, that may have one or more letters in it.
Your task is to try to see the letters.
Find a place to write it/them down at the end.
Here we go…….
OK, write down any letter/s you saw.
Let’s do another one.
Ready?
There were two letters in each sequence. But was only 1 digit between the A and P in first sequence. There were 3 digits between the X and H in second sequence.

OK, write down any letter/s you saw. Raise your hand if you saw both A and P in the first sequence. Raise your hand if you saw both X and H in the second sequence.
Attentional Blink

Task: Report white letter, then say if there was an ‘X’ later in the sequence.

Results: Prob detection of X when doing white-letter task (exptl, white dot) versus not (control, black dots).

Failure to see X even when you are looking for it! Limitation on temporal attention/awareness. Happens for lots of kinds of stimuli. Is that unreported item processed? How might you test w/ fMRI?

*Figures © American Psychological Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. Source: Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). *J. Exp. Psychol. Hum. Percept. Perform.* 18(3), 849–860. DOI: 10.1037/0096-1523.18.3.849*
Task: detect a specific face (T1), then scene (T2).

Figure 1. Experimental Design
In the dual-task experiment, subjects searched for a face target (T1) and a scene target (T2) presented in an RSVP of scrambled distractor scenes. The SOA between T1 and T2 was varied. The single-task experiment was identical except that subjects searched only for the target scene. Insets show the three face targets and examples of both indoor and outdoor scene targets.

Neural Correlates of Attentional Blink

Behavioral Data (scene detection):

![Behavioral Data Graph]

- Single T2 task
- Dual T1-T2 task

fMRI Data - Response of PPA:

![fMRI Data Graph]

Perceptual Representation without awareness

Awareness correlated with strength of response

Lecture 24: Attention & Awareness

Outline

I. The crux of Attention: capacity limits and selection
 overt vs covert attention
 exogenous versus endogenous attention
 spatial versus feature-based

II. Brain Mechanisms of Attention
 Attention modulates neural response in multiple regions, including
 LGN, V1, FFA, MT, A1, etc.
 Source of attentional signals is frontal and parietal lobes
 the fronto-parietal attention network (= multiple demand system)
 a very domain-general system (unlike FFA, MT, TPJ, etc)

III. Neural correlates of awareness
 Binocular rivalry
 Neural response correlated with awareness, unconfounded from stimulus
 Attentional blink
 Some evidence for perceptual representation without awareness
9.13 The Human Brain
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.