Lecture overview

• Background: Studying the responses of neurons in the visual system -- why should we care?
• What kinds of stimuli should we use to study a sensory system?
• Getting ready for quantitative physiology -- an introduction to recording from visual neurons in the fly
Lecture overview

• Background: Studying the responses of neurons in the visual system -- why should we care?

• What kinds of stimuli should we use to study a sensory system?

• Getting ready for quantitative physiology -- an introduction to recording from visual neurons in the fly
Sensory systems neurophysiology in a nutshell

“Encoding”

Stimuli → Neuronal codes → Behavior

“Decoding”

What are the “atoms” of these codes?
- action potentials (spikes)

What are the limitations of this approach?
- multiple neuronal structures
- many potential “codes” in each structure
- potentially non-stationary (i.e. changing) (e.g. learning)
- correlation vs. causation
Stimuli \rightarrow Neuronal codes \rightarrow Behavior

Image: Kimberly Brown-Azzarello. Flickr. CC BY-NC.
The ventral visual stream

Stimuli → Neuronal codes → Behavior

Image: Kimberly Brown-Azzarello. Flickr. CC BY-NC.

Ventral visual stream

Stimuli → Neuronal codes → Behavior

Image adapted from Hubel 1988

© David Hubel. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Behaviorally relevant analysis window

Stimuli → Neuronal codes → Behavior
Motion detectors in primate brain (MT)

Fig. 1 and 5. removed due to copyright restrictions. See Maunsell, J. H., and D. C. Van Essen. "Functional Properties of Neurons in Middle Temporal Visual Area of the Macaque Monkey. I. Selectivity for Stimulus Direction, Speed, and Orientation." Journal of Neurophysiology 49, no. 5 (1983): 1127-47.
Neuronal codes
Stimuli \rightarrow \text{Neuronal codes} \rightarrow \text{Behavior}

Your motion detectors (MT) are as good as you are!

Britten et al. (1992)

Lecture overview

• Background: Studying the responses of neurons in the visual system -- why should we care?

• What kinds of stimuli should we use to study a sensory system?

• Getting ready for quantitative physiology -- an introduction to recording from visual neurons in the fly
Stimuli → Neuronal codes → Behavior

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences

Egelhaff et al. (2002)
What the fly ‘sees’ while flying (played at 1/5 speed)

Figure removed due to copyright restrictions.

Courtesy of Dr. Martin Egelhaff
Concept: population code.
The information about the variable(s) of interest is distributed among a set of neurons (“population” of neurons).

H1 neuron
(the fly has two)

Fig. 12. Diagram of retinal motions induced by translations (lift, thrust, side slip) and rotations (yaw, roll, pitch) of the head of a fly in a stable visual surrounding. For each situation, the tangential cells of the lobula plate excited selectively by the sketched retinal motion pattern are listed.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences
Placing an electrode to record from neurons in the fly visual system

Figure removed due to copyright restrictions.

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences

Courtesy of Dr. Martin Egelhauff
Neural activity of ‘H1’ neuron during walking simulation

Figure removed due to copyright restrictions.
The (left) H1 neuron’s receptive field extends over large parts of the visual hemisphere, including part of the frontal contralateral visual field (see azimuth = -15 deg in Fig. 8). The H1 neuron responds predominantly to horizontal back-to-front motion. It shows a stripe of high motion sensitivity along the horizontal plane [see Fig. 8(a)]. In contrast, the V1 neuron is very sensitive to vertical downward motion in the frontolateral part of the visual field [see Fig. 8(b)]. In addition, it responds to horizontal back-to-front motion in the dorsal part of the caudolateral visual field. These characteristics of both the H1 and the V1 neurons correspond very well with published results obtained using drifting gratings to determine the general preferred directions of the cells (Hausen, 1976). But it was not known until now that V1 also responds to oblique vertical upward motion in the dorsocaudal region of the visual field [see Fig. 8(b)]. Also, the gradual change of the LPDs from vertical downward in the frontolateral visual field to the almost reversed LPDs in the dorsocaudal region could not be demonstrated using conventional motion stimuli.

If a recording is stable enough to map the receptive field several times in one animal, the resulting response fields are indistinguishable in most cases. Similarly, recordings from the H1 and V1 neurons suggest that the response fields are consistent across different recording sessions.

FIGURE 8. Response fields of the neurons H1 (a) and V1 (b) are shown in a Mercator projection (see text) of the right visual hemisphere (f, frontal; c, caudal; d, dorsal; v, ventral). The fly’s straight ahead direction would be an azimuth of 0 deg and an elevation of 0 deg. Local motion tuning (obtained with standard stimulus parameters) is represented by arrows. Their direction indicates the local preferred direction (LPD) and their length the normalized local motion sensitivity (LMS). Locations of measurements are marked with little circles, unmarked arrows are interpolated from neighbouring measured responses. The response fields of both neurons extend into the left visual hemisphere (azimuth = −15 deg). The H1 neuron (a) is highly sensitive to horizontal back-to-front motion along the equatorial regions of the visual field. Its motion sensitivity decreases towards the poles of the visual hemisphere. In contrast, the V1 neuron (b) is most sensitive to vertical downward motion in the frontolateral part of the visual field. In the dorsal part of the lateral to caudolateral response field V1 is sensitive to horizontal back-to-front motion and in the dorsoventral region the neuron responds to slightly tilted upwards motion. The global structure of extended parts of both response fields shows striking similarities with specific rotatory optic flow fields. For the H1 neuron the axis of rotation corresponds to the vertical body axis of the fly. The axis of rotation for the V1 neuron lies approximately in the equatorial plane at an azimuth of about 120 deg. Note the gradual change of LPD and LMS over both response fields.

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences

Krapp and Hengstenberg, Vision Res. (1997)
Lecture overview

• Background: Studying the responses of neurons in the visual system -- why should we care?
• What kinds of stimuli should one use to study a sensory system?
• Getting ready for quantitative physiology -- an introduction to recording from visual neurons in the fly
Overall goal of the fly labs: the basics of carrying out a complete, quantitative neurophysiology experiment.

- Design visual stimuli to test a hypothesis
- Setup a prep to record from relevant neurons
- Present your visual stimuli in a controlled, repeatable manner
- Collect digital data during that presentation
- Isolate individual spikes in that data
- Analyze the relationship between the stimuli and the neuronal spikes
- Document your findings

MATLAB proj 2
FLY design lab
FLY WET LAB 1
FLY WET LAB 2
FLY WET LAB 2
MATLAB proj 1
Fly analysis lab 1
MATLAB proj 3
Fly analysis lab 2
Lab Report 2
Life cycle of a fly

Eggs

Hatchling --> adult

Larva (maggot)

Pupa (mummy)

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences
Fly visual system

Lobula plate tangential cells
(~60 tans, 10 are spiking)

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

VS1 cell, Jurgen Haag

© Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
H1 cell

Viewed from behind the head

Viewed from in front of the head

Fig. 3. Response of the H1-neuron to a moving grating pattern 3 s after the onset of the stimulus. The more intensely reproduced part of the spike corresponds to a second peak of the action potential. The stimulus was presented to the contralateral eye. A Stationary pattern. B Pattern movement in the preferred direction, i.e., regressive. C Pattern movement in the anti-preferred direction (null direction), i.e., progressive. Pattern wavelength λ = 21.5 deg; contrast m = 0.68; angular velocity w = 11 deg/s; average pattern irradiance 6.08 mW/cm². *Physiol. Rev.*

© Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences
Preparation of the fly for dissection
Dissection of the fly for neuronal recording
Fly setup

- insect pin in abdomen
- tape to hold wire
- fly on its back
- wax to hold fly

Your setup will hold your slide at this spot

This will be your reference electrode (G2 on your amp)

Course 9.17: Brain Laboratory, Brain and Cognitive Sciences
Fly setup
Dissection of the fly for neuronal recording

Step 5: Setup the fly in your recording rig, visualize neural structures, and place a recording electrode.

* before proceeding to your rig, you should place a reference electrode in the abdomen and secure it to the glass slide (see lab handout)

5.1 Note that saline has been applied. You should add saline from time to time to prevent the tissue from drying out.

5.2 Closer view.

5.3 Still closer. Structures are outlined above. If you have trouble visualizing neural structures, try adjusting your light. If you do not see everything perfectly, you can still try to record.

5.4 One electrode placement. The arrow is aligned along the electrode entering from the right. The electrode tip is in the saline and just about to contact the tissue. It is at this point that you should turn on your amplifier, etc.

5.5 Another electrode placement. There is no magic spot, but you should aim your electrode near or medial to the lobular plate (even more medial than shown here), listen closely for neural activity, and not advance the electrode much beyond first contact with the tissue. (please see your lab handout for more details)
Your primary goals for FLY LAB 1

• Practice the fly preparation and dissection

• Practice recording from neurons

• Qualitative ‘mapping’ of visual responses from those neurons

Homework before Wed lab

• LAB NOTEBOOK for wed lab: how to record from fly

• QUIZ: today’s lecture, how to record from fly, recitation paper
• QUIZ next week: Any of the above + Matlab code
9.17 Systems Neuroscience Lab
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.