Introduction to Neural Computation

Prof. Michale Fee
MIT BCS 9.40 — 2018

Lecture 16
Networks, Matrices and Basis Sets
Seeing in high dimensions

https://research.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
Two-layer feed-forward network

- We can expand our set of output neurons to make a more general network...

\[
\begin{bmatrix}
 u_1, u_2, u_3, \ldots, u_{nb}
\end{bmatrix} = \tilde{u}
\]

Lots of synaptic weights! \(W_{ab} \)

\[
\begin{bmatrix}
 v_1, v_2, v_3, \ldots, v_{na}
\end{bmatrix} = \tilde{v}
\]
Two-layer feed-forward network

- We now have a weight from each of our input neurons onto each of our output neurons!

- We write the weights as a matrix.

\[
W_{ab} = \begin{bmatrix}
W_{11} & W_{12} & W_{13} \\
W_{21} & W_{22} & W_{23} \\
W_{31} & W_{32} & W_{33}
\end{bmatrix}
\]

weight matrix

\[
a = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix},
b = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\]

row column

post pre
Two-layer feed-forward network

- We can write down the firing rates of our output neurons as a matrix multiplication.

\[\vec{v} = W \vec{u} \quad v_a = \sum_b W_{ab} u_b \]

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
= \begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix}
= \begin{bmatrix}
\vec{w}_{a=1} \cdot \vec{u} \\
\vec{w}_{a=2} \cdot \vec{u} \\
\vec{w}_{a=3} \cdot \vec{u}
\end{bmatrix}
\]

- Dot product interpretation of matrix multiplication
Two-layer feed-forward network

- There is another way to think about what the weight matrix means...

\[
\vec{v} = W \vec{u} = \begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix}
\]

Vector of weights from input neuron 1

Vector of weights from input neuron 2

Vector of weights from input neuron 3

\[
W = \begin{bmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]
Two-layer feed-forward network

- There is another way to think about what the weight matrix means...

\[
\vec{v} = W \vec{u} = \begin{bmatrix}
\vec{w}^{(1)} \\
\vec{w}^{(2)} \\
\vec{w}^{(3)}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix}
\]

- What is the output if only input neuron 1 is active?

\[
\vec{v} = \begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
0 \\
0
\end{bmatrix}
= u_1 \begin{bmatrix}
w_{11} \\
w_{21} \\
w_{31}
\end{bmatrix}
= u_1 \vec{w}^{(1)} = u_1 \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}
\]
Two-layer feed-forward network

\[\mathbf{\tilde{v}} = W \mathbf{\tilde{u}} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \]

The output pattern is a linear combination of contributions from each of the input neurons!
Examples of simple networks

- Each input neuron connects to one neuron in the output layer, with a weight of one.

\[
W = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad W = I
\]

\[
\vec{v} = W \vec{u} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}
\]

\[
\vec{v} = \vec{u}
\]
Examples of simple networks

- Each input neuron connects to one neuron in the output layer, with an arbitrary weight

\[
W = \Lambda
\]

\[
\Lambda = \begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix}
\]

\[
\vec{v} = \Lambda \vec{u} = \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{bmatrix}\begin{bmatrix}
u_1 \\
v_2 \\
v_3
\end{bmatrix} = \begin{bmatrix}
\lambda_1 u_1 \\
\lambda_2 u_2 \\
\lambda_3 u_3
\end{bmatrix}
\]
Examples of simple networks

- Input neurons connect to output neurons with a weight matrix that corresponds to a rotation matrix.

\[W = \Phi \]

\[\Phi = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \]

\[\vec{v} = \Phi \cdot \vec{u} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \cos \phi - u_2 \sin \phi \\ u_1 \sin \phi + u_2 \cos \phi \end{bmatrix} \]
Examples of simple networks

Let’s look at an example rotation matrix ($\Phi=-45^\circ$)

$$\Phi(-45^\circ) = \begin{bmatrix} \cos(-\frac{\pi}{4}) & -\sin(-\frac{\pi}{4}) \\ \sin(-\frac{\pi}{4}) & \cos(-\frac{\pi}{4}) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\vec{v} = \Phi \cdot \vec{u} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\vec{v} = \frac{1}{\sqrt{2}} \begin{bmatrix} u_2 + u_1 \\ u_2 - u_1 \end{bmatrix}$$
Examples of simple networks

• Rotation matrices can be very useful when different directions in feature space carry different useful information

\[\Phi(-45^\circ) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \]
Examples of simple networks

- Rotation matrices can be very useful when different directions in feature space carry different useful information.

\[
\vec{v} = \frac{1}{\sqrt{2}} \begin{bmatrix} u_2 + u_1 \\ u_2 - u_1 \end{bmatrix}
\]

\[
\Phi
\]

\[
I(\lambda_2)
\]

\[
I(\lambda_1)
\]

\[
A_L
\]

\[
A_R
\]

\[
\text{color}
\]

\[
v_1
\]

\[
v_2
\]

\[
\text{brightness}
\]

\[
\Phi
\]

\[
\text{elevation}
\]

\[
\text{loudness}
\]
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
Matrix transformations

- In general, A maps the set of vectors in \mathbb{R}^2 onto another set of vectors in \mathbb{R}^2.

\[\vec{y} = A\vec{x} \]
Matrix transformations

- In general, A maps the set of vectors in \mathbb{R}^2 onto another set of vectors in \mathbb{R}^2.

$$\vec{y} = A\vec{x}$$

$$\vec{x} = A^{-1}\vec{y}$$
Matrix transformations \[\vec{y} = A\vec{x} \]

- Perturbations from the identity matrix

\[
A = \begin{pmatrix}
1 + \delta & 0 \\
0 & 1 + \delta
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
1 + \delta & 0 \\
0 & 1
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
1 & 0 \\
0 & 1 + \delta
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
1 + \delta & 0 \\
0 & 1 - \delta
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}
\]

These are all diagonal matrices

\[
\Lambda = \begin{pmatrix}
a & 0 \\
0 & b
\end{pmatrix}
\]

\[
\Lambda^{-1} = \begin{pmatrix}
a^{-1} & 0 \\
0 & b^{-1}
\end{pmatrix}
\]
Rotation matrix

- Rotation in 2 dimensions

\[\Phi(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \]

\[\theta = 10^\circ \quad \theta = 25^\circ \quad \theta = 45^\circ \quad \theta = 90^\circ \]

- Does a rotation matrix have an inverse? \(\det(\Phi) = 1 \)

- The inverse of a rotation matrix is just its transpose

\[\Phi^{-1}(\theta) = \Phi(-\theta) = \Phi^T(\theta) \]
Rotated transformations

- Let’s construct a matrix that produces a stretch along a 45° angle...

\[\Phi = \begin{pmatrix} \cos 45 & -\sin 45 \\ \sin 45 & \cos 45 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]

- We do each of these steps by multiplying our matrices together

\[\Phi \Lambda \Phi^T \tilde{x} \]
Rotated transformations

- Let’s construct a matrix that produces a stretch along a 45° angle…

\[\bar{x} \quad \Phi^T \bar{x} \quad \Lambda \Phi^T \bar{x} \quad \Phi \Lambda \Phi^T \bar{x} \]

\[
\Phi^T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \\
\Lambda = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \\
\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \\
\Phi \Lambda \Phi^T = \frac{1}{2} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
\]
Inverse of matrix products

• We can undo our transformation by taking the inverse

\[
[\Phi \Lambda \Phi^T]^{-1}
\]

• How do you take the inverse of a sequence of matrix multiplications \(A\times B\times C\)?

\[
[ABC]^{-1} = C^{-1}B^{-1}A^{-1}
\]

• Thus...

\[
[\Phi \Lambda \Phi^T]^{-1} = [\Phi^T]^{-1} \Lambda^{-1} [\Phi]^{-1}
\]

\[
[\Phi \Lambda \Phi^T]^{-1} = \Phi \Lambda^{-1} \Phi^T
\]

\[
\Lambda^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
[ABC]^{-1}ABC = C^{-1}B^{-1}A^{-1}ABC
\]

\[
= C^{-1}B^{-1}BC
\]

\[
= C^{-1}C
\]

\[
= I
\]
Rotated transformations

- Let’s construct a matrix that undoes a stretch along a 45° angle…

\[\Phi = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

\[\Lambda^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix} \]

\[\Phi(\pm 45°) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]

\[\Phi \Lambda^{-1} \Phi^T = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \]
Rotated transformations

• Construct a matrix that does compression along a -45° angle...

\[\Phi^T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]

\[\Lambda = \begin{pmatrix} 0.2 & 0 \\ 0 & 1 \end{pmatrix} \]

\[\Phi(-45^\circ) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \]

\[\Phi \Lambda \Phi^T = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.4 \end{pmatrix} \]
Transformations that can’t be undone

- Some transformation matrices have no inverse…

\[
\begin{align*}
\Phi^T &= \Phi(45^\circ) \\
&= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \\
\Lambda &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\
\Phi(-45^\circ) &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \\
\Phi \Lambda \Phi^T &= \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}
\end{align*}
\]

\[
\det(\Phi \Lambda \Phi^T) = 0 \quad \det(\Lambda) = 0
\]
Learning Objectives for Lecture 16

- More on two-layer feed-forward networks
- Matrix transformations (rotated transformations)
- Basis sets
- Linear independence
- Change of basis
Basics of basis sets

• We can think of vectors as abstract ‘directions’ in space. But in order to specify the elements of a vector, we need to choose a coordinate system.

• To do this, we write our vector as a linear combination of a set of special vectors called the ‘basis set.’

\[
\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x \hat{e}_1 + y \hat{e}_2 + z \hat{e}_3
\]

• The numbers x, y, z are called the coordinates of the vector.

• The vectors \(\{\hat{e}_1, \hat{e}_2, \hat{e}_3\} \) are called the ‘basis vectors’, in this case, in three dimensions.
Basics of basis sets

- In order to describe an arbitrary vector in the space of real numbers in n dimensions (\mathbb{R}^n), our basis vectors need to have n numbers.

- In order to describe an arbitrary vector in \mathbb{R}^n, we need to have n basis vectors.

- The basis set we wrote down earlier $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$ is called the ‘standard basis’. Each vector has one element that’s a one and the rest are zeros.

$$\hat{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
Orthonormal basis

- In addition, the standard basis has the interesting property that each vector is a unit vector

\[\hat{e}_i \cdot \hat{e}_i = 1 \]

\[
\hat{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

- Each vector is orthogonal to all the other vectors

\[\hat{e}_1 \cdot \hat{e}_2 = 0 \quad \hat{e}_1 \cdot \hat{e}_3 = 0 \quad \hat{e}_2 \cdot \hat{e}_3 = 0 \quad \hat{e}_i \cdot \hat{e}_j = 0, \quad i \neq j \]

- These properties can be written compactly as

\[\hat{e}_i \cdot \hat{e}_j = \delta_{ij} \quad \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]

- Any basis set with these properties is called ‘orthonormal’.
Basics of basis sets

• The standard basis is not the only orthonormal basis

Consider a different set of orthogonal unit vectors: \(\{ \vec{f}_1, \vec{f}_2 \} \)

\[
\vec{v} = (\vec{v} \cdot \hat{f}_1) \hat{f}_1 + (\vec{v} \cdot \hat{f}_2) \hat{f}_2
\]

\[
\vec{v}_f = \begin{pmatrix}
\vec{v} \cdot \hat{f}_1 \\
\vec{v} \cdot \hat{f}_2
\end{pmatrix}
\]

• The vector coordinates are given by the dot products of the vector \(\vec{v} \) with each of the basis vectors.
Non-orthonormal basis sets

- Vectors can also be written as a linear combination of (almost) any vectors, not just orthonormal basis vectors.

\[\vec{v} = c_1 \vec{f}_1 + c_2 \vec{f}_2 \]
Basics of basis sets

• Let’s decompose an arbitrary vector \(\mathbf{v} \) in a basis set \(\{ \mathbf{f}_1, \mathbf{f}_2 \} \)

\[
\mathbf{v} = c_1 \mathbf{f}_1 + c_2 \mathbf{f}_2
\]

• The coefficients \(c_1 \) and \(c_2 \) are called ‘coordinates of the vector \(\mathbf{v} \) in the basis \(\{ \mathbf{f}_1, \mathbf{f}_2 \} \).

• The vector \(\mathbf{v}_f = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \) is called the ‘coordinate vector’ of \(\mathbf{v} \) in the basis \(\{ \mathbf{f}_1, \mathbf{f}_2 \} \).
Basics of basis sets

• Let’s look at an example. Consider the basis

\[\{ \vec{f}_1, \vec{f}_2 \} = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\} \]

and the vector \(\vec{v} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \) in the standard basis.

• Find the vector coordinates of \(\vec{v} \) in the new basis.

• Write \(\vec{v} \) as a linear combination of the new basis vectors:

\[c_1 \vec{f}_1 + c_2 \vec{f}_2 = \vec{v} \quad \text{system of equations} \]

\[c_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \]

\[\begin{align*}
 c_1 - 2c_2 &= 3 \\
 3c_1 + c_2 &= 5
\end{align*} \]
Basics of basis sets

• We can write this system of equations in matrix notation:

\[
\begin{align*}
c_1 - 2c_2 &= 3 \\
3c_1 + c_2 &= 5
\end{align*}
\]

\[F \vec{v}_f = \vec{v}\]

where

\[
F = \begin{pmatrix}
1 & -2 \\
3 & 1
\end{pmatrix} \quad \vec{v}_f = \begin{pmatrix} c_1 \\
\end{pmatrix} \quad \vec{v} = \begin{pmatrix} 3 \\
5
\end{pmatrix}
\]

• Now solve for \(\vec{v}_f \) by multiplying both sides of the equation by the inverse of matrix \(F \).

\[
F^{-1} F \vec{v}_f = F^{-1} \vec{v}
\]

\[
\vec{v}_f = F^{-1} \vec{v}
\]
Basics of basis sets

• We can find the inverse of F:

$$F^{-1} = \frac{1}{7} \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}$$

$$\vec{v}_f = F^{-1} \vec{v} = \frac{1}{7} \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 3+10 \\ -9+5 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 13 \\ -4 \end{pmatrix}$$

• Thus, we find the coordinate vector of v in basis $\{\vec{f}_1, \vec{f}_2\}$

$$\vec{v}_f = \begin{pmatrix} 13/7 \\ -4/7 \end{pmatrix}$$
Basics of basis sets

• In summary: to find the coordinate vector for \mathbf{v} in the basis $\{ \mathbf{f}_1, \mathbf{f}_2 \}$, we construct a matrix F whose columns are just the elements of the basis vectors.

$$F = \begin{pmatrix} \mathbf{f}_1 & | & \mathbf{f}_2 \end{pmatrix} \quad F = \begin{pmatrix} \mathbf{f}_1 & | & \mathbf{f}_2 & | & \mathbf{f}_3 & \ldots & | & \mathbf{f}_n \end{pmatrix}$$

such that $\mathbf{v} = F \mathbf{v}_f$

• We can solve for \mathbf{v}_f by multiplying both sides of the equation by the inverse of matrix F

$$\mathbf{v}_f = F^{-1} \mathbf{v} \quad \text{‘change of basis’}$$

• But this only works if F has an inverse!
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
Subspaces

- We need n vectors in \mathbb{R}^n to form a basis in \mathbb{R}^n. But not any set of n vectors will do the trick!

- Consider the following set of vectors

$$
\vec{f}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \vec{f}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \vec{f}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}
$$

- Note that any linear combination of $\{\vec{f}_1, \vec{f}_2, \vec{f}_3\}$ will always lie in the (x, y) plane

$$\vec{v} = c_1 \vec{f}_1 + c_2 \vec{f}_2 + c_3 \vec{f}_3 = \begin{pmatrix} c_1 + c_3 \\ c_2 + c_3 \\ 0 \end{pmatrix}$$

- Thus, the set of vectors $\{\vec{f}_1, \vec{f}_2, \vec{f}_3\}$ doesn’t span all of \mathbb{R}^3. It only spans the x-y plane - a subspace of \mathbb{R}^3
Note that we can write any of these vectors as a linear combination of the other two.

\[
\begin{align*}
\vec{f}_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & \vec{f}_2 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} & \vec{f}_3 &= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \\
\end{align*}
\]

• Thus, this set of vectors is called ‘linearly dependent’.

• Any set of \(n \) linearly dependent vectors cannot form a basis in \(\mathbb{R}^n \).

• How do you know if a set of vectors is linearly dependent?

\[
F = \left(\begin{array}{c|c|c|c}
\vec{f}_1 & \vec{f}_2 & \vec{f}_3 & \cdots & \vec{f}_n \\
\end{array} \right) \quad \det(F) = 0
\]
Linear dependence

• If \(\det(F) = 0 \) then \(F \) maps \(\vec{v}_f \) into a subspace of \(\mathbb{R}^n \)

\[
F = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}
\]

• If \(F \) maps onto a subspace, then the mapping is not reversible!

\[\det(F) = 0\]
Geometric interpretation of determinant

• The determinant is the ‘volume’ of a unit cube after transformation (area of unit square in two dimensions).

\[
\text{area} = 1
\]

\[
\text{det}(A) = 0.5
\]

• A pure rotation matrix has a determinant of one.

\[
\text{area} = 1
\]

\[
\text{det}(A) = 1
\]
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis
Change of basis

\[\left\{ \vec{f}_1, \vec{f}_2, \ldots, \vec{f}_n \right\} \quad F = \begin{pmatrix} \vec{f}_1 \\ \vec{f}_2 \\ \vdots \\ \vec{f}_n \end{pmatrix} \]

- If \(\det(F) \neq 0 \) then the vectors \(\left\{ \vec{f}_1, \vec{f}_2, \ldots, \vec{f}_n \right\} \)
 - are linearly independent
 - form a complete basis set in \(\mathbb{R}^n \)

- Then the matrix \(F \) implements a ‘change of basis’

From standard basis to \(\vec{f} \) \quad Or from \(\vec{f} \) to standard basis

\[\vec{v}_f = F^{-1} \vec{v} \]
\[\vec{v} = F \vec{v}_f \]
Change of basis

• The change of basis is easy if \(\{ \vec{f}_1, \vec{f}_2 \} \) is an orthonormal basis...

\[
F = \begin{pmatrix}
\hat{f}_1 & \hat{f}_2 \\
\end{pmatrix} \quad F^T = \begin{pmatrix}
\hat{f}_1 \\
\hat{f}_2 \\
\end{pmatrix}
\]

\[
F^T F = \begin{pmatrix}
\hat{f}_1 & \hat{f}_2 \\
\end{pmatrix} \begin{pmatrix}
\hat{f}_1 & \hat{f}_2 \\
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} = I
\]

Thus...

\[
F^T = F^{-1}
\]

F is just a rotation matrix!
Change of basis

• With an orthonormal basis set, the coordinates are just given by the dot product with the basis vectors!

\[
F = \begin{pmatrix}
\hat{f}_1 & \hat{f}_2 \\
\end{pmatrix}
\quad F^{-1} = F^T = \begin{pmatrix}
\hat{f}_1 \\
\hat{f}_2 \\
\end{pmatrix}
\]

\[
\vec{v}_f = F^{-1}\vec{v}
\]

\[
\vec{v}_f = F^T\vec{v} = \begin{pmatrix}
\vec{v} \cdot \hat{f}_1 \\
\vec{v} \cdot \hat{f}_2 \\
\end{pmatrix}
\]

47
Change of basis

- In two dimensions, there is a family of orthonormal basis sets

\[
\hat{f}_1 = \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} \quad \hat{f}_2 = \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} \quad F = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}
\]

\[
\vec{v} = (\vec{v} \cdot \hat{f}_1) \hat{f}_1 + (\vec{v} \cdot \hat{f}_2) \hat{f}_2
\]

\[
\vec{v}_f = F^T \vec{v} \quad \vec{v}_f = \begin{pmatrix} \vec{v} \cdot \hat{f}_1 \\ \vec{v} \cdot \hat{f}_2 \end{pmatrix}
\]

- The vector coordinates are given by the dot products of the vector \(\vec{v}\) with each of the rotated basis vectors.
Seeing in high dimensions

https://research.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html

Screen shot © Embedding Projector Project. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Learning Objectives for Lecture 16

• More on two-layer feed-forward networks

• Matrix transformations (rotated transformations)

• Basis sets

• Linear independence

• Change of basis