9.59J / 24.905 Laboratory in Psycholinguistics (CI-M) 2017

Instructor: Ted Gibson

pre-requisite: 9.00
Other useful classes: 24.900;
Probability and Statistics
Goals

Students will learn to:
1. read the primary literature in language research and design informative experiments;
2. present research orally;
3. write a research paper;
4. gather data on the crowd-sourcing website Mechanical Turk (run by Amazon.com);
5. analyze their experiments using the R programming language
Class 1: Overview

- Mechanical Turk demonstration in class
- Syllabus / requirements information
- The usefulness of quantitative methods in linguistics
- Language information sources and constraints
 - Lexicon; syntax; world knowledge; pragmatics; prosody; working memory; context
Mechanical Turk in class

1. Set up the materials in turkolizer format (Gibson, Fedorenko & Piantadosi (2011)

Particle-shift and length: Locality of syntactic dependencies
Verb-particle shift (-, +) x Length (short, long)

Short NP object:
Local Particle: Joe threw out the documents.
Non-local Particle: Joe threw the documents out.

Long NP object:
Local Particle: Joe threw out the very important documents that he brought home. *
Non-local Particle: Joe threw the very important documents that he brought home out. *

Predictions of dependency locality:
No difference for short NP object; Big difference for long NP object
Mechanical Turk in class

Particle-shift and length: Dependency-locality

particle-length 1 loc-particle-short
Joe threw out the documents.
? Did Joe throw out the documents? Yes

particle-length 1 nonloc-particle-short
Joe threw the documents out.
? Did Joe throw out the documents? Yes

particle-length 1 loc-particle-long
Joe threw out the very important documents that he brought home.
? Did Joe throw out the documents? Yes

particle-length 1 nonloc-particle-long
Joe threw the very important documents that he brought home out.
? Did Joe throw out the documents? Yes
Mechanical Turk in class

2. Run the turkolizer program on the formatted items produces a .tuk.csv file:

- turk materials: look at this file
- Includes information for decoding later:
 a. linking the presentation order to the appropriate conditions
 b. correct answers to comprehension questions
3. Set up the Turk template in Mechanical Turk "Create"

- Instructions

- Format for ratings (1 - 5 or 7)
- Rating then question(s)
Mechanical Turk in class

4. Post the survey
• Go to M Turk: go to Create
• New Batch with an existing project

5. Wait 45 – 60 mins

6. Get the data from "Manage":
• Download data
Topics and Texts

Constraints on language processing: Lexicon, syntax, world knowledge, pragmatics	The R programming language
Language as communication: words, syntax	Descriptive statistics & plotting
The domain specificity / generality of language	Significance testing & confidence intervals
Pragmatics of language use	Regression and mixed effects regression
Behavioral methods and issues in experimental design	Amazon.com’s Mechanical Turk

Readings: *Analyzing Linguistic Data*, Harald Baayen textbook; *R for Data Science*; 2-3 journal papers every class; 10-15 for final paper. (Approximately: 50 total)
Assignments and grading

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 programming assignments in R:</td>
<td>15%</td>
</tr>
<tr>
<td>16 discussion notes:</td>
<td>15%</td>
</tr>
<tr>
<td>Paper 1: Evaluation of an experiment in the</td>
<td>10%</td>
</tr>
<tr>
<td>literature (40% for draft 1; 60% for draft 2):</td>
<td></td>
</tr>
<tr>
<td>Paper 2: Project proposal, plus bibliography:</td>
<td>5%</td>
</tr>
<tr>
<td>Oral presentation of proposed project:</td>
<td>5%</td>
</tr>
<tr>
<td>Paper 3: Replication writeup:</td>
<td>10%</td>
</tr>
<tr>
<td>Oral presentation of final project:</td>
<td>10%</td>
</tr>
<tr>
<td>Paper 4: Final paper:</td>
<td>20%</td>
</tr>
<tr>
<td>Class/lab participation (obligatory attendance):</td>
<td>10%</td>
</tr>
</tbody>
</table>

Late policy: 10% off each day late, down to 50% off. Then you can hand it in later for 50% credit. (If you contact us ahead of time, with reasons for needing to be late, then we may be able to avoid the deductions entirely)
Psycholinguistics Lab topic areas

- Language above the word level
 - Lexicon, syntax, semantics, pragmatics, discourse, world knowledge, working memory constraints
- Language as communication: Language as rational inference
- The domain specificity / generality of language
Class 1: Overview

• Mechanical Turk demonstration in class

• Syllabus / requirements information

• The usefulness of quantitative methods in linguistics

• Language information sources and constraints
 ➢ Lexicon; syntax; world knowledge; pragmatics; prosody; working memory; context
Preliminaries:
Properties of Human Language

(1) Discreteness / hierarchical structure

- Language is made up of little units that combine to make bigger units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>phonemes</td>
<td>20-40</td>
<td>none</td>
</tr>
<tr>
<td>morphemes</td>
<td>10,000+</td>
<td>single chunk</td>
</tr>
<tr>
<td>words</td>
<td>50,000+</td>
<td>simple combinations</td>
</tr>
<tr>
<td>sentences</td>
<td>infinite</td>
<td>complete thought</td>
</tr>
</tbody>
</table>
Preliminaries: Properties of Human Language

(2) Productivity - Language is not just a memorized set of sentences

* Colorless green ideas sleep furiously.
* Furiously sleep ideas green colorless.

There are *rules* that govern sentence structure
Preliminaries:
Properties of Human Language

Prescriptive rules: What an old-fashioned English teacher might tell you

1. “Don’t say ‘ain’t’”

2. “Don’t end sentences in prepositions”

 Counterexamples:
 - That is something which I cannot put up with.
 - *That is something up with which I cannot put.

3. “Don’t split infinitives”

 Counterexamples:
 - To boldly go where no man has gone before.
 - ? To go boldly where no man has gone before.
 - ? Boldly to go where no man has gone before.
Preliminaries:
Properties of Human Language

Descriptive Rules: Rules obeyed implicitly.

Sentence formation rules:
\[S \to NP \ VP \]
“\text{A sentence (S) consists of a noun phrase (NP) and a verb phrase (VP)}”
\[VP \to V \ NP \]
\[VP \to V \text{ that } S \]

The Red Sox beat the Yankees.
Mario said that the Red Sox beat the Yankees.
Jill thought that Mario said that the Red Sox beat the Yankees. ...

(Note: this is a \textbf{recursive} rule: The category S expands to another S further along)
Differences between 24.900 (intro to linguistics) and 9.59/24.905 (this class)

- Methods / evidence:
 - 24.900: within some domains (syntax & semantics): acceptability judgments on a few individuals
 - 9.59/24.905: experiments using many items and participants; many different dependent measures:
 - Acceptability judgments (how good does this sound?);
 - Accuracy on comprehension questions;
 - Sentence completions;
 - Reaction times:
 - Reading times;
 - Looking times to visual scenes, given auditory input;
 - Lexical decision times
 - Brain imaging:
 - Event-related potentials (EEG)
 - Magneto-encephalography (MEG)
 - Functional MRI
When do we need an experiment?

• Acceptability ratings ("How natural does this utterance sound?")
 ➢ E.g., compare:
 • “the cat”
 • “cat the”

• Do we need an experiment to decide that determiners / articles come before the noun?

• How could we convince ourselves without an experiment that this was the case?

• What if you didn’t speak the language? Wouldn’t you want some quantitative data to provide evidence?

• In addition, most current theoretical questions depend on more complex examples, where the judgments aren’t so clear
Behavioral measures *

- Ratings ("How natural / normal does this utterance sound?")
 - E.g., compare:
 - “Mary wondered who bought what.”
 - “Mary wondered what who bought.”
 - “Mary wondered what who bought when.”

- Careful about the notion of “grammatical” vs. “ungrammatical”: is there a binary choice? Or is it continuous?

- Reading times / reaction time

- Response accuracy to questions about the content of a sentence

 - All of these measures are noisy, probably because there are many factors that contribute to them, and we are generally only investigating one or two

 - That’s why we do statistical analyses of the behavioral results: If there are reliable differences in the measure across materials and participants, then the factor in question may affect the dependent measure

 - But of course there can always be other confounding factors that we didn’t consider: it’s difficult to design good experiments
Syntax & Semantics

• Standard method in the field of syntax:
 ➢ Acceptability judgment method
 • Single-subject / single-item

➢ Weaknesses (Schütze, 1996; Cowart, 1997; Wasow & Arnold, 2005; Ferreira, 2005; Featherston, 2007; Myers, 2009; Gibson & Fedorenko, 2010, 2011; Gibson, Fedorenko & Piantadosi, 2013)

 • small number of experimental participants (typically 1);
 • small number of experimental stimuli (typically 1);
 • cognitive biases on the part of the researcher and participants
Syntax & Semantics: Quantitative methods

• The advantages of quantitative methods (controlled experiments or corpus analyses)

 ➢ enable the use of inferential statistics to evaluate the likelihood of particular hypotheses;
 ➢ experimental participants are naïve with respect to the hypotheses;
 ➢ experimental materials are presented in such a way so as to avoid context effects (i.e. in a random order, varying orders across participants).
Mechanical Turk in class

6. 45 mins later: download the data from "Manage"

7. Analyze data: edit an R analysis file
 • Check quality of participant work (and if they have done previous surveys with the same name): look at variable data_summ
 • Possibly reject bad participants (to ensure the quality of the participant pool)

8. Plot the results from each experiment: look at means / variance / individual data

9. run statistics (if needed)