Speech and speech processing

9.59 / 24.905
April 7, 2005
Ted Gibson
The structure of language

Sound structure: phonetics and phonology

“cat” = /k/ + /æ/ + /t/
“eat” = /i/ + /t/
“rough” = /r/ + /^/ + /f/
Language sounds

• win wing

• writer vs. rider

• Sounds, not the spelling: “rough” = /r^f/
Summary

• Articulatory properties of speech
 ➢ Distinctive / articulatory features
 ➢ English consonants and vowels
 ➢ Information is smeared between segments: co-articulation

• Speech perception
 ➢ Problems: Lack of invariance, smearing
 ➢ Solutions: Acoustic features; Categorical perception; Motor theory of perception; Use of context

• What aspects of speech are learned / innate?
Phones vs. Phonemes vs. Allophones

- Phones: acoustically different speech sounds

- Phonemes: sounds that make a difference in meaning
 - pot vs. dot

- Allophones: different phones corresponding to the same phoneme
 - Spin vs. pin
 - S[p]in vs. [pʰ]in
Source-Filter Model

- Larynx: buzzy sound source
- Changeable resonators:
 - Pharynx (throat);
 - Mouth
 - Lips
 - Nose
Key Properties of Speech

• Formants of voiced sounds (F_1, F_2, etc.) – Harminics: Strongest frequencies
 (Result from the size and shape of the resonating cavities)

• Range of human hearing 20Hz-20,000Hz

• Sound is modulated by manipulating the articulators.
 ➢ Changes resonance properties (frequencies of formants)
 ➢ Changes airflow.
Table removed for copyright reasons.
The International Phoentic Alphabet (Phonemes of English).
Phonemes of the world

40 phonemes in English

Range: 11 in Polynesian – 141 in Khoisan (“Bushman”)

Total inventory across languages: thousands

However, some are very common across all languages (e.g., /m/, /n/, /t/, /d/, /k/, /g/, /s/, /z/):

Easy to produce, easy to distinguish
Speech sounds: Distinctive/Articulatory features

Consonants: Restricted vocal tract

1. place of articulation (dental vs. velar etc.)

2. manner of articulation (stop vs. nasal vs. fricative etc.)

3. voicing (voiced, unvoiced)
English Stop Consonants

- /b/: voiced, labial, stop
- /p/: unvoiced, labial, stop
- /d/: voiced, dental, stop
- /t/: unvoiced, dental, stop
- /g/: voiced, velar, stop
- /k/: unvoiced, velar, stop
English Fricatives

- /f/: unvoiced, labio-dental, fricative
- /v/: voiced, labio-dental, fricative
- /s/: unvoiced, dental, fricative
- /z/: voiced, dental, fricative
- /sh/: unvoiced, alveolar, fricative
- /zh/: voiced, alveolar, fricative
English Nasals

- /m/: voiced, labial, nasal
- /n/: voiced, dental, nasal
- /ng/: voiced, velar, nasal
Speech sounds: Distinctive features

Vowels: Unrestricted vocal tract

1. part of tongue (front vs. back)
 - beet vs. boot; bet vs. butt

2. position of tongue (high, middle, low)
 - beet vs. bat; boot vs. bought
Table removed for copyright reasons.
The International Phonetic Alphabet (Phonemes of English).
“The dog snapped”

- The different types of segments and what they look like.
 - Stops vs. Vowels
 - Fricatives
 - White noise
 - Generally it is not clear where one segment begins and another stops.
 - Information is smeared
Graphs of frequency vs. time removed for copyright reasons.
Voicing in a Spectrogram: The /ka/ - /ga/ continuum

- Voicing: differences in Voice Onset Time (VOT)
- Small VOT: voiced; Large VOT: unvoiced
- Plosion spike (stop) followed by formants (vowel)

Graphs of frequency vs. time removed for copyright reasons.
Phonemes are not produced serially

• Sounds are not produced serially
 “cat” is not just “/k/ + /æ/ + /t/”
 “eat” is not just “/i/ + /t/”
 “rough” is not just “/r/ + /^/ + /f/”

• Synthesized speech often sounds unnatural

• Parallel transmission
 ➢ Context conditioned variation
Continuous speech

- **Coarticulate**: adjust pronunciation of current sound to take into account preceding and following sounds
 - *kill* vs. *cool*
 - *bog*

- Information for segments overlap so we can get out more in a shorter amount of time

- Fast (~15 sounds/sec): Articulators are not always in the ideal position so we need to cheat
Graphs of frequency vs. time removed for copyright reasons.
Not independent segments, but Features

- Speech is a trajectory through a sequence of articulatory targets
- Rules are conditioned on distinctive features
 - Plural -s
 - bib /z/ dog /z/ dad /z/
 - tip /s/ tick /s/ cat /s/
 - kiss /iz/ wish /iz/
 - pinch /iz/
 - hen /z/ till /z/ bay /z/
- Example of assimilation – a feature spreads from one segment to an adjacent segment
 - Makes things easier to pronounce
Speech Perception
Problems for Speech Perception

- Fast, 15 sounds/sec up to 30 sounds/sec in fast speech
- Parallel transmission: Sounds blend into each other
 - Each chunk of signal contains evidence of multiple phonemes
 - Coarticulation
Problems for Speech Perception

• Prosody (suprasegmentals)
 ➢ Stress – prominence within words
 • *perMIT* as a verb
 • *PERmit* as a noun
 ➢ Rate – Changes formant transitions
 • Same sound can be produced for two different phonemes
 – /ba/ vs. /wa/
 ➢ Intonation – Variations in pitch across a phrase
 • *Dad wants me to mow the lawn.*
 • *Dad wants me to mow the lawn?*
Problems for Speech Perception

- Emotional State
 - Smiling
 - Frowning
 - Stressed

- Different speakers
Problems for Speech Perception

• Context-conditioned variation
 ➢ One-to-many variation: Same phoneme may be superficially realized in different ways
 ➢ Many-to-one variation: Different phonemes can have the same sound in different contexts
Summary: Problems in Speech Perception

• Problems
 ➢ Lack of invariance, smearing

• Solutions
 ➢ Acoustic features
 ➢ Categorical perception
 ➢ Motor theory of perception
 ➢ Context
 • Same level
 – Phonemic context, prosodic context
 • High level
 – Syntactic, semantic, lexical knowledge
Solutions to speech perception

There are some acoustic invariants:

- **Stops**
 - Bursts: aperiodic burst of energy in some frequencies

- **Fricatives**
 - Turbulence – broad spectrum energy

- **Vowels**
 - Steady state formants
 - relations between formants

- **Nasals**
 - Low frequency band of energy along with absence of high frequency noise
 - voicing
 - /m/ and /n/ differ in formant transitions
Solutions: Categorical Perception

• For consonants, much of the difficulty of telling sounds apart is at the boundaries among sounds.

• We impose categories on physically continuous stimuli.
In-class demonstration: the /ka/ - /ga/ continuum

- Voicing: differences in Voice Onset Time (VOT)
- Small VOT: voiced; Large VOT: unvoiced

Graphs of frequency vs. time removed for copyright reasons.
/ga/ - /ka/ in-class demonstration

1. 0 msec (/ga/)
2. 70 msec (/ka/)
3. 60 msec (/ka/)
4. 30 msec (usually /ga/)
5. 10 msec (/ga/)
6. 20 msec (/ga/)
7. 40 msec (usually /ka/)
8. 50 msec (/ka)
% labeled /ga/ in /ga/-/ka/ continuum
Results of discrimination task:
10 msec intervals of VOT
• **Categorical Perception**: Can’t discriminate stimuli any better than you can identify them.
 - Discriminate – tell two things apart
 - Identify – classify a sound
 - Perceptual phenomenon; Not a response strategy

What Good is Categorical Perception?

It helps to
- Ignore irrelevant information
- Quickly classify transient events
 - consonants versus vowels
Motor Theory of Perception

• McGurk Effect – Visual information automatically integrated into speech percept

• Place of articulation cued by visual input

• Manner cued by ear
Solutions: Phonemic Context

- Use knowledge of how surrounding segments are articulated to interpret ambiguous segments
 - /s/ is higher frequency than /sh/
 - White noise is higher preceding /a/ than /u/
 - A sound halfway between /s/ and /sh/ is interpreted differently depending on whether it is pronounced before a /u/ or an /a/
Graph removed for copyright reasons.
Solutions: Prosodic Context

Rate Normalization

• We correct for speaking rate
 ➢ VOT discrimination
 • Categorical boundary shifts for /ga/-/ka/ if previous syllable is pronounced faster (e.g., short /da/ versus long /da/)

 ➢ Formants
 • /ba/ vs. /wa/
 • If succeeding syllable is faster, then percept can change.
Solutions: Higher-Level Context

- Noisy perception (Miller, Heise, Lichten, 1951)
 Grammatical: *Accidents kill motorists on the highways.*
 Anomalous: *Accidents carry honey between the house.*
 Scrambled: *Around accidents country honey the shoot.*

- Shadowing – Echo speech you hear (Marslen-Wilson & Welsh, 1978)
 - Intentional mispronunciations
 - When corrected, they go completely unnoticed and do not delay shadowing

- Use syntax and semantics to perceive the input
Context can Affect Perception

- /pi/ vs. /bi/ demo: lexical knowledge affects categorical boundary

- Not just high-level percept, but perceptual discrimination is affected.
Summary: Problems in Speech Perception

- **Problems**
 - Lack of invariance, smearing

- **Solutions**
 - Acoustic features
 - Categorical perception
 - Motor theory of perception
 - Context
 - Same level
 - Phonemic context, prosodic context
 - High level
 - Syntactic, semantic, lexical knowledge