Approaches to structure learning

• Constraint-based learning (Pearl, Glymour, Gopnik):
 – Assume structure is unknown, no knowledge of parameterization or parameters

• Bayesian learning (Heckerman, Friedman/Koller):
 – Assume structure is unknown, arbitrary parameterization.

• Theory-based Bayesian inference (T & G):
 – Assume structure is partially unknown, parameterization is known but parameters may not be. Prior knowledge about structure and parameterization depends on domain theories (derived from ontology and mechanisms).
Advantages/Disadvantages of the constraint-based approach

• Deductive
• Domain-general
• No essential role for domain knowledge:
 – Knowledge of possible causal structures not needed.
 – Knowledge of possible causal mechanisms not used.
• Requires large sample sizes to make reliable inferences.
The Blicket detector

Image removed due to copyright considerations. Please see:
The Blicket detector

• Can we explain these inferences using constraint-based learning?
• What other explanations can we come up with?
Constraint-based model

- Data:
 - d_0: $A=0, B=0, E=0$
 - d_1: $A=1, B=1, E=1$
 - d_2: $A=1, B=0, E=1$

- Constraints:
 - A, B not independent
 - A, E not independent
 - B, E not independent
 - B, E independent conditional on the presence of A
 - A, E not independent conditional on the absence of B
 - Unknown whether B, E independent conditional on the absence of A.

- Graph structures consistent with constraints:

NOTE: Also have A, B independent conditional on the presence of E. Does that eliminate the hypothesis that B is a blicket?
Constraint-based inference

• Data:
 – d_1: $A=1$, $B=1$, $E=1$
 – d_2: $A=1$, $B=0$, $E=1$
 – d_0: $A=0$, $B=0$, $E=0$

• Conditional independence constraints:
 – B, E independent conditional on A
 – B, A independent conditional on E
 – A, E correlated, unconditionally or conditional on B

• Inferred causal structure:
 – B is not a blicket.
 – A is a blicket.
Why not use constraint-based methods + fictional sample sizes?

• No degrees of confidence.

• No principled interaction between data and prior knowledge.

• Reliability becomes questionable.

 “The prospect of being able to do psychological research without recruiting more than 3 subjects is so attractive that we know there must be a catch in it.”
A deductive inference?

• Causal law: detector activates if and only if one or more objects on top of it are blickets.

• Premises:
 – Trial 1: $A B$ on detector – detector active
 – Trial 2: A on detector – detector active

• Conclusions deduced from premises and causal law:
 – A: a blicket
 – B: can’t tell (Occam’s razor \rightarrow not a blicket?)
What kind of Occam’s razor?

• Classical all-or-none form:
 – “Causes should not be multiplied without necessity.”

• Constraint-based: faithfulness

• Bayesian: probability
For next time

• Come up with slides on Theory-based Bayesian causal inference.
• Combine current teaching slides, which emphasize Bayes versus constraint-based, with Leuven slides, which emphasize a systematic development of the theory.
• Incorporate (if time) cross-domains, plus AB-AC.
Approaches to structure learning

• Constraint-based learning (Pearl, Glymour, Gopnik):
 – Assume structure is unknown, no knowledge of parameterization or parameters

• Bayesian learning (Heckerman, Friedman/Koller):
 – Assume structure is unknown, arbitrary parameterization.

• Theory-based Bayesian inference (T & G):
 – Assume structure is partially unknown, parameterization is known but parameters may not be. Prior knowledge about structure and parameterization depends on domain theories (derived from ontology and mechanisms).
For next year

• Include deductive causal reasoning as one of the methods. It goes back a long time….
Critical differences between Bayesian and Constraint-based learning

• Basis for inferences:
 – Constraint-based inference based on just qualitative independence constraints.
 – Bayesian inference based on full probabilistic models (generated by domain theory).

• Nature of inferences:
 – Constraint-based inferences are deductive.
 – Bayesian inferences are probabilistic.
Bayesian causal inference

Data X

$x_1 = \langle A = 1, B = 1, C = 1, D = 1, E = 1 \rangle$
$x_2 = \langle A = 1, B = 0, C = 1, D = 0, E = 1 \rangle$
$x_3 = \langle A = 0, B = 1, C = 0, D = 1, E = 0 \rangle$
$x_4 = \langle A = 1, B = 0, E = 0 \rangle$
$x_5 = \langle C = 1, E = 1 \rangle$

Causal hypotheses h

Bayes: \[P(h \mid X) \propto P(X \mid h) \ P(h) \]
Why be Bayesian?

• Explain how people can *reliably* acquire *true* causal beliefs given very limited data:
 – Prior causal knowledge: Domain theory
 – Causal inference procedure: Bayes

• Understand how symbolic domain theory interacts with rational statistical inference:
 – Theory generates the hypothesis space of candidate causal structures.
Role of domain theory

• Determines prior over models, $P(h)$
 – Causally relevant attributes of objects and relations between objects: variables
 – Viable causal relations: edges

• Determines likelihood function for each model, $P(X|h)$, via (perhaps abstract or “light”) mechanism knowledge:
 – How each effect depends functionally on its causes: $V \leftarrow f_\theta(\text{parents}[V]) \rightarrow P(V | \text{parents}[V])$
Bayesian causal inference

Data X

\[x_1 = \langle A = 1, B = 1, C = 1, D = 1, E = 1 \rangle\]
\[x_2 = \langle A = 1, B = 0, C = 1, D = 0, E = 1 \rangle\]
\[x_3 = \langle A = 0, B = 1, C = 0, D = 1, E = 0 \rangle\]
\[x_4 = \langle A = 1, B = 0, E = 0 \rangle\]
\[x_5 = \langle C = 1, E = 1 \rangle\]

Causal hypotheses h

\[P(h \mid X) \propto P(X \mid h) \ P(h)\]

\[P(A, B, C, D, E \mid \text{causal model}) = \prod_{V \in \{A, B, C, D, E\}} P(V \mid \text{parents}[V])\]
(Bottom-up) Bayesian causal learning in AI

• Typical goal is data mining, with no strong domain theory.
 – Uninformative prior over models $P(h)$
 – Arbitrary parameterization (because no knowledge of mechanism), with no strong expectations of likelihoods $P(X|h)$.

• Results not that different from constraint-based approaches, other than more precise probabilistic representation of uncertainty.
“Backwards blocking”
(Sobel, Tenenbaum & Gopnik, 2004)

Image removed due to copyright considerations. Please see:
Children use Information about Novel Causal Powers in Categorization

– Two objects: A and B
– Trial 1: $A \ B$ on detector – detector active
– Trial 2: A on detector – detector active
– 4-year-olds judge whether each object is a blicket
 • A: a blicket (100% of judgments)
 • B: probably not a blicket (66% of judgments)
Theory

• Ontology
 – Types: Block, Detector, Trial
 – Predicates:
 Contact(Block, Detector, Trial)
 Active(Detector, Trial)

• Constraints on causal relations
 – For any Block b and Detector d, with probability q:
 Cause(Contact(b,d,t), Active(d,t))

• Functional form of causal relations
 – Causes of Active(d,t) are independent mechanisms, with causal strengths w_i. A background cause has strength w_0. Assume a near-deterministic mechanism: $w_i \sim 1$, $w_0 \sim 0$.

Theory

• **Ontology**
 – **Types:** Block, Detector, Trial
 – **Predicates:**

 Contact(Block, Detector, Trial)

 Active(Detector, Trial)

Theory

- **Ontology**
 - **Types:** Block, Detector, Trial
 - **Predicates:**
 - Contact(Block, Detector, Trial)
 - Active(Detector, Trial)

\[
A = 1 \text{ if Contact(block } A, \text{ detector, trial), else 0} \\
B = 1 \text{ if Contact(block } B, \text{ detector, trial), else 0} \\
E = 1 \text{ if Active(detector, trial), else 0}
\]
Theory

• Constraints on causal relations
 – For any Block \(b \) and Detector \(d \), with probability \(q \):
 Cause(Contact(\(b,d,t \), Active(\(d,t \)))

\[
\begin{align*}
 P(h_{00}) &= (1 - q)^2 & \quad & P(h_{10}) &= q(1 - q) \\
 P(h_{01}) &= (1 - q)q & \quad & P(h_{11}) &= q^2
\end{align*}
\]

No hypotheses with \(E \rightarrow B \), \(E \rightarrow A \), \(A \rightarrow B \), etc.

\(\Rightarrow \) “A is a blicket”
Theory

• Functional form of causal relations
 – Causes of Active\((d,t)\) are independent mechanisms, with causal strengths \(w_b\). A background cause has strength \(w_0\). Assume a near-deterministic mechanism: \(w_b \sim 1\), \(w_0 \sim 0\).

\[
\begin{align*}
P(h_{00}) &= (1 - q)^2 & P(h_{01}) &= (1 - q) q & P(h_{10}) &= q(1 - q) & P(h_{11}) &= q^2
\end{align*}
\]

\[
\begin{array}{cccc}
A & B & A & B \\
E & E & E & E
\end{array}
\]

\[
\begin{array}{cccc}
P(E=1 | A=0, B=0): & 0 & 0 & 0 & 0 \\
P(E=1 | A=1, B=0): & 0 & 0 & 1 & 1 \\
P(E=1 | A=0, B=1): & 0 & 1 & 0 & 1 \\
P(E=1 | A=1, B=1): & 0 & 1 & 1 & 1 \\
\end{array}
\]

“Activation law”: \(E=1\) if and only if \(A=1\) or \(B=1\).
Theory

• Functional form of causal relations

 Causes of Active(d,t) are independent mechanisms, with causal strengths w_b. A background cause has strength w_0. Assume a near-deterministic mechanism: $w_b \sim 1$, $w_0 \sim 0$.

\[
\begin{align*}
P(h_{00}) &= (1 - q)^2 & P(h_{01}) &= (1 - q) q & P(h_{10}) &= q(1 - q) & P(h_{11}) &= q^2
\end{align*}
\]

\[
\begin{align*}
P(E=1 \mid A=0, B=0) &= w_0 & P(E=1 \mid A=1, B=0) &= w_0 & P(E=1 \mid A=0, B=1) &= w_0 + (1 - w_b) w_0 & P(E=1 \mid A=1, B=1) &= w_0 + (1 - w_b) w_0
\end{align*}
\]

“Noisy-OR law”
Bayesian inference

• Evaluating causal network hypotheses in light of data:

\[P(h_i \mid d) = \frac{P(d \mid h_i)P(h_i)}{\sum_{h_j \in H} P(d \mid h_j)P(h_j)} \]

• Inferring a particular causal relation:

\[P(A \rightarrow E \mid d) = \sum_{h_j \in H} P(A \rightarrow E \mid h_j)P(h_j \mid d) \]
Modeling backwards blocking

\[
P(h_{00}) = (1 - q)^2 \quad P(h_{01}) = (1 - q) q \quad P(h_{10}) = q(1 - q) \quad P(h_{11}) = q^2
\]

\[
P(E=1 \mid A=0, B=0): \quad 0 \quad 0 \quad 0 \quad 0
\]

\[
P(E=1 \mid A=1, B=0): \quad 0 \quad 0 \quad 1 \quad 1
\]

\[
P(E=1 \mid A=0, B=1): \quad 0 \quad 1 \quad 0 \quad 1
\]

\[
P(E=1 \mid A=1, B=1): \quad 0 \quad 1 \quad 1 \quad 1
\]

\[
\frac{P(B \rightarrow E \mid d)}{P(B \mid E \mid d)} = \frac{P(h_{01}) + P(h_{11})}{P(h_{00}) + P(h_{10})} = \frac{q}{1 - q}
\]
Modeling backwards blocking

\[P(h_{01}) = (1 - q) q \]
\[P(h_{10}) = q(1 - q) \]
\[P(h_{11}) = q^2 \]

\[P(E=1 \mid A=1, B=1): \]

\[\frac{P(B \rightarrow E \mid d)}{P(B \mid E \mid d)} = \frac{P(h_{01}) + P(h_{11})}{P(h_{10})} = \frac{1}{1 - q} \]
Modeling backwards blocking

\[P(E=1 \mid A=1, B=0) : \]
\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
A=1 & 1 & 1 \\
B=0 & 1 & 1 \\
\end{array}
\]

\[P(E=1 \mid A=1, B=1) : \]
\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
A=1 & 1 & 1 \\
B=1 & 1 & 1 \\
\end{array}
\]

\[
P(h_{10}) = q(1 - q) \quad P(h_{11}) = q^2
\]

\[
P(B \rightarrow E \mid d) = \frac{P(h_{11})}{P(h_{10})} = \frac{q}{1-q}
\]
Manipulating the prior

I. Pre-training phase: Blickets are rare

II. Backwards blocking phase:

After each trial, adults judge the probability that each object is a blicket.
• “Rare” condition: First observe 12 objects on detector, of which 2 set it off.

![Chart showing data for baseline, after AB trial, and after A trial for people and Bayes models.](image)

Figure by MIT OCW.
• “Common” condition: First observe 12 objects on detector, of which 10 set it off.

Figure by MIT OCW.
Manipulating the priors of 4-year-olds
(Sobel, Tenenbaum & Gopnik, 2004)

I. Pre-training phase: Blickets are rare.
II. Backwards blocking phase:

Rare condition:
- A: 100% say “a blicket”
- B: 25% say “a blicket”

Common condition:
- A: 100% say “a blicket”
- B: 81% say “a blicket”
Inferences from ambiguous data

I. Pre-training phase: Blickets are rare

![Diagram showing multiple trials with objects labeled A, B, and C.]

II. Two trials: A B → detector, B C → detector

After each trial, adults judge the probability that each object is a blicket.
Same domain theory generates hypothesis space for 3 objects:

- Hypotheses:

 \[h_{000} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \quad h_{100} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \]

 \[h_{010} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \quad h_{001} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \]

 \[h_{110} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \quad h_{011} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \]

 \[h_{101} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \quad h_{111} = \begin{array}{c}
 A \\
 B \\
 C
 \end{array} \]

- Likelihoods: \[P(E=1| A, B, C; h) = 1 \] if \(A = 1 \) and \(A \rightarrow E \) exists, or \(B = 1 \) and \(B \rightarrow E \) exists, or \(C = 1 \) and \(C \rightarrow E \) exists, else 0.
• “Rare” condition: First observe 12 objects on detector, of which 2 set it off.

Figure by MIT OCW.
Ambiguous data with 4-year-olds

I. Pre-training phase: Blickets are rare.

II. Two trials: A B → detector, B C → detector

Final judgments:

A: 87% say “a blicket”
B or C: 56% say “a blicket”
Ambiguous data with 4-year-olds

I. Pre-training phase: Blickets are rare.

II. Two trials: $A \ B \rightarrow$ detector, $B \ C \rightarrow$ detector

Final judgments:

A: 87% say “a blicket”

B or C: 56% say “a blicket”

Backwards blocking (rare)

A: 100% say “a blicket”

B: 25% say “a blicket”
The role of causal mechanism knowledge

• Is mechanism knowledge necessary?
 – Constraint-based learning using χ^2 tests of conditional independence.

• How important is the deterministic functional form of causal relations?
 – Bayes with “probabilistic independent generative causes” theory (i.e., noisy-OR parameterization with unknown strength parameters; c.f., Cheng’s causal power).
Bayes with correct theory:

Independence test with fictional sample sizes:

Figure by MIT OCW.
Bayes with correct theory:

Bayes with “noisy sufficient causes” theory:

Figure by MIT OCW.
Blicket studies: summary

- Theory-based Bayesian approach explains one-shot causal inferences in physical systems.
- Captures a spectrum of inference:
 - Unambiguous data: adults and children make all-or-none inferences
 - Ambiguous data: adults and children make more graded inferences
- Extends to more complex cases with hidden variables, dynamic systems, ….