The steady-state, one-dimensional temperature distribution in a composite wall, made of slabs of three different solid materials, is shown below. Each material has a constant, but different, thermal conductivity k. The heat fluxes q'' within each material are indicated in the diagram.

(a) What is the relative magnitude of q_B'' and q_C''?

(b) How does q_A'' vary with distance?

(c) What is the relative magnitude of q_A'' and q_B'' at position 2?

(d) What is the relative magnitude of k_B and k_C?

(e) What is the relative magnitude of k_A and k_B?

(f) Sketch a plot of q'' versus x labeling the positions 1, 2, 3, and 4 and showing q_A'', q_B'' and q_C''.

(g) What is likely to be to the left of position x? What else might be there?

(h) The region to the right of slab C is a fluid with heat transfer coefficient h and temperature far from position 4 of T_m. Write an expression relating surface temperature T_A, T_m, k_C, and $\frac{dT}{dx}$ in slab C.