% reduced_Newton

All code generated with Matlab® Software

% reduced_Newton.m
%
% This MATLAB® m-file uses a reduced-Newton algorithm with a
% weak line search to solve a set of non-linear algebraic
% equations.
%
% The input parameters are:
%
% x0 = a column vector of the initial guess of the unknowns
%
% calc_f = the name of a MATLAB® function that calculates
% the function vector
%
% calc_Jac = the name of a function that calculates the Jacobian
%
% Options = a data structure containing optional flags
% .max_iter = max # of Newton's method iterations
% .max_iter_LS = max # of weak line search iterations
% .rtol = relative tolerance
% .atol = absolute tolerance
% .step_tol = abs. tolerance below which we switch to full Newton's method
% .verbose = return a trajectory matrices containing the history
% of the Newton's method iterations
% .use_range = if non-zero, limit the maximum magnitude of the full Newton
% step so that the change in each component is not greater than
% that in the vector .range
% .range = a vector of the ranges for each of the unknowns. Each component
% of the Newton step
%
% Param = a data structure containing parameters that are to be passed to
% the calc_f and calc_Jac functions
%
% The output parameters are:
%
% x = the final estimate of the solution
%
% iflag = an integer flag that is 1 for convergence,
% 0 for no convergence, and negative for an error
%
% iter_conv = number of iterations required for convergence
%
% x_traj = a matrix where row # j is the solution estimate at iteration j-1
% f_traj = a matrix where row # j is the function vector at iteration j-1

function [x,iflag,iter_conv,x_traj,f_traj] = ...
 reduced_Newton(x0,calc_f,calc_Jac,Options,Param);

% First, signal no convergence.
iflag = 0;
% Set number of iterations required for convergence.
iter_conv = 0;

% Extract number of state variables.
Nvar = length(x0);

% Initialize solution estimate.
x = x0;

% Calculate initial function vector.
f = feval(calc_f,x,Param);
if(length(f) ~= Nvar)
 iflag = -1;
 error('reduced_Newton: calc_f returns vector of improper length');
end
% ensure f is a column vector
if(size(f,1)~=Nvar)
 f = f';
end

% Obtain initial norm of the function vector for later convergence tests.
f0_norm_inf = max(abs(f));
f_norm_2sq = dot(f,f);

% Record initial state and function vectors in trajectory.
count_traj = 1;
x_traj(count_traj,:) = x';
f_traj(count_traj,:) = f';

% Set the flag telling us to perform weak line searches.
i_do_LS = 1;

% Begin Newton's method iterations
for iter = 1:Options.max_iter
 % calculate the Jacobian
 Jac = feval(calc_Jac,x,Param);

 % Solve the set of linear equations for the full line step
 try
 p = Jac\(-f);
 catch
 iflag = -2;
 error('reduced_Newton: full Newton step calculation error');
 end
% Now, reduce the magnitude of the Newton step if the user has
% specified a maximum change allowable for each component.
if(Options.use_range)
 % Calculate the unit vector lying in the Newton line search
 % direction.
 p_length = norm(p,2);
 p_unit = p/p_length;

 % Calculate the maximum step in this direction allowable under
 % the condition that each state variable must not change by
 % a magnitude greater than the specified range for that variable.
 step_allow = max(abs(Options.range));
 for ivar=1:Nvar
 try
 step_ivar = abs(Options.range(ivar)/p_unit(ivar));
 if step_ivar < step_allow
 step_allow = step_ivar;
 end
 end
 end
 step_allow = min(step_allow, p_length);
 p = p_unit*step_allow;
end

% Begin the weak line search
if(i_do_LS) % perform a weak line search
 for iter_LS = 0:Options.max_iter_LS
 iconv_LS = 0;

 % Calculate fractional step length
 lambda = 2^(-iter_LS);

 % Calculate new solution estimate
 x_new = x + lambda*p;

 % Calculate function at the new solution estimate
 f_new = feval(calc_f,x_new,Param);

 % Check descent criterion
 f_new_norm_2sq = dot(f_new,f_new);
 if(f_new_norm_2sq <= f_norm_2sq)
 x = x_new;
 f = f_new;
 f_norm_2sq = f_new_norm_2sq;
 iconv_LS = 1;
 end
end
break;
end

end

% If we did not satisfy descent condition, update
% with final result.
if(~iconv_LS)
 x = x_new;
 f = f_new;
 f_norm_2sq = f_new_norm_2sq;
end

else % use full Newton step instead

% Calculate new solution estimate
 x = x + p;

% Calculate function at the new solution estimate
 f = feval(calc_f,x,Param);

end

% if in verbose mode, record state and function vectors
if(Options.verbose)
 count_traj = count_traj + 1;
 x_traj(count_traj,:) = x';
 f_traj(count_traj,:) = f';
end

% check for convergence to the solution
 f_norm_inf = max(abs(f));
 i_conv_rel = 0;
 if(f_norm_inf <= Options.rtol*f0_norm_inf)
 i_conv_rel = 1;
 end
 i_conv_abs = 0;
 if(f_norm_inf <= Options.atol)
 i_conv_abs = 1;
 end
 if((i_conv_rel==1)&(i_conv_abs==1))
 iter_conv = iter;
 iflag = 1;
 break;
 end

% Check to see whether need to perform a line search
% at the next step.
if(f_norm_inf <= Options.step_tol)
 i_do_LS = 0;
else
 i_do_LS = 1;
end

done

return;