5.08 TD1
\(\beta\)-ketoacyl-ACP synthase I (FabB)

I. Background
- E. coli enzyme involved in elongation of fatty acids; works in concert with two other synthases (II and III)
- Catalyzes Claisen condensation between ACP-acyl fatty acid + ACP-malonyl
- His-His-Cys catalytical triad in active site
- Inhibited irreversibly by natural product cerulenin, which forms covalent adduct with active site cysteine (IC\textsubscript{50} = 3 uM).

II. Crystal structure of cerulenin in complex with FabB
- At end of paper, Protein Data Bank code for structure given: 1FJ8
- To download structure from the Protein Data Bank:
 - Google search for PDB; go to http://www.rcsb.org/pdb/
 - Search for “1FJ8” – open page
 - Click left side: Download/display file
 - Download the structure file, PDB, no compression
 - Save; filename = 1FJ8.pdb
- To view structure:
 - Install DSViewerPro (download software from course website); open
 - Drag 1FJ8.pdb into the DSViewerPro screen
 - Get used to the Rotate, Translate, and Zoom buttons
 - Universal color code: red = oxygen, blue = nitrogen, yellow = sulfur. H atoms not shown.
 - Note that structure may be a dimer/multimer. To convert to a monomer (for easier viewing):
 - Open pdb file with Wordpad
 - Save as different filename
 - Note that there are 4 chains, ABC and D, all with same amino acid sequence
 - Delete chains B,C, and D. save file
 - Open monomer structure
- Find the cerulenin buried inside
 - Double click on one amino acid to highlight it. Double click on it again to highlight the entire protein chain. Go to view/Display Style and click “off”. Protein chain disappears, leaving only cerulenin
 - Double click on cerulenin, go to view/Display Style, and select green color.
o Unclick everything. Go back to view/Display Style and select “Line”. Protein should reappear
• Use ribbon mode to view alpha helices and beta sheets
 o Unclick everything. Go to view/Display style. Select the “protein” tab. Select “line ribbon.” Go to “atom” tab and select “none” to make the protein chain disappear (improves clarity).
 o Make “plumbing diagram” showing helices and sheets and residue numbers involved. Indicate tertiary interactions. Sheets = arrow. Helix = cylinder.
• View the cerulenin binding site
 o Double click cerulenin to highlight it
 o Go to Tools/enter command. Type “SelectBy Radius inside 7.0 aminoacid. This will highlight all amino acids within 7 angstroms of cerulenin.
 o Go to view/show only. This will make all the rest of the protein invisible.
• Measure distances between cerulenin and protein
 o [it may help to show cerulenin by atom color and in ‘stick’ mode]
 o highlight one atom by clicking on it; the highlight a second atom as well by clicking on it while holding down the “shift” key
 o Go to Tools/monitors/distance. Green bond and distance in angstroms should appear
 o Hydrophobic interactions max distance ~5 Å (ex. C-H--H-C distance)
 o Hydrogen bond max distance ~4 Å (ex. O-H--O distance)

III. BLAST analysis of FabB
• Obtain the amino acid sequence for FabB (from E. coli)
 o Search under “protein” for “FabB E. coli”
 o Click on the entry that is synthase I from E. coli; scroll to bottom for sequence.
 o Check a few residues against the sequence from the PBD file just to make sure
• Use BLAST to find proteins homologous to FabB
 o Click on “protein-protein BLAST”
 o Paste in the amino acid sequence. Numbers don’t matter. Hit “BLAST”
 o Click on “format”
 o You get a bunch of hits. Cursor over the red lines tells you identity of each hit (enzyme name and species)
 o Select some for the same enzyme from different organisms; paste into a text file

IV. ClustalW alignment of FabB protein sequences from different organisms
• Google search “ClustalW”. Go to: http://www.ebi.ac.uk/clustalw/
• Paste in data in Fasta (or other) format; format very important or data will be rejected. Click on HELP and then “your sequences” for more info.
• Hit “run”