1. (a) Sketch the radial probability distribution for a 5d orbital in a carbon atom. You should label the axes, but do not need to include numbers. Use arrows to indicate the radial nodes.
 (b) Label the most probable radius, r_{mp}, on your 5d radial probability distribution with an *.

2. Provide the ground state electron configuration expected for:
 (a) Ca
 (b) V
 (c) Cu
 (d) Br$^-$
 (e) Fe$^{2+}$
 (f) Hf
 Note that you may always use the shorthand (noble gas) configuration unless specifically asked otherwise.

3. The binding energy for a 3s electron in technetium ($Z = 43$) is -1090 eV.
 (a) Calculate the effective nuclear charge, Z_{eff}, experienced by a 3s electron in technetium.
 (b) Identify the most likely binding energy for a 3s electron in ruthenium ($Z = 44$) from the following three options: -980 eV, -1090 eV, or -1140 eV. Explain your reasoning.
5.111 Principles of Chemical Science
Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.