Which of the following might represent the term on the y-axis?

1. Atomic radius
2. Ionization energy
3. Electron affinity
4. Electronegativity
5. 1 or 2
6. 2, 3, or 4
Which of the following might represent the term on the y-axis?

1. Atomic radius
2. Ionization energy
3. Electron affinity
4. Electronegativity
5. 1 or 2
6. 2, 3, or 4
Which is correct?

1. Struct #1 Struct #2
 \[FC_{OA} = 0 \quad FC_{OA} = 0 \]
 \[FC_{OB} = +1 \quad FC_{OB} = +1 \]
 \[FC_{OC} = -1 \quad FC_{OC} = -1 \]

2. Struct #1 Struct #2
 \[FC_{OA} = 0 \quad FC_{OA} = -1 \]
 \[FC_{OB} = +1 \quad FC_{OB} = +1 \]
 \[FC_{OC} = -1 \quad FC_{OC} = 0 \]

3. Struct #1 Struct #2
 \[FC_{OA} = -2 \quad FC_{OA} = -2 \]
 \[FC_{OB} = 0 \quad FC_{OB} = 0 \]
 \[FC_{OC} = -2 \quad FC_{OC} = -2 \]

4. Struct #1 Struct #2
 \[FC_{OA} = 0 \quad FC_{OA} = 1 \]
 \[FC_{OB} = -1 \quad FC_{OB} = -1 \]
 \[FC_{OC} = 1 \quad FC_{OC} = 0 \]
Which is correct?

<table>
<thead>
<tr>
<th>Option</th>
<th>Struct 1</th>
<th>Struct 2</th>
<th>FC<sub>OA</sub></th>
<th>FC<sub>OA</sub></th>
<th>FC<sub>OB</sub></th>
<th>FC<sub>OB</sub></th>
<th>FC<sub>OC</sub></th>
<th>FC<sub>OC</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Struct #1 Struct #2</td>
<td>FC<sub>OA</sub> = 0</td>
<td>FC<sub>OA</sub> = 0</td>
<td>FC<sub>OB</sub> = +1</td>
<td>FC<sub>OB</sub> = +1</td>
<td>FC<sub>OC</sub> = -1</td>
<td>FC<sub>OC</sub> = -1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Struct #1 Struct #2</td>
<td>FC<sub>OA</sub> = 0</td>
<td>FC<sub>OA</sub> = -1</td>
<td>FC<sub>OB</sub> = +1</td>
<td>FC<sub>OB</sub> = +1</td>
<td>FC<sub>OC</sub> = -1</td>
<td>FC<sub>OC</sub> = 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Struct #1 Struct #2</td>
<td>FC<sub>OA</sub> = -2</td>
<td>FC<sub>OA</sub> = -2</td>
<td>FC<sub>OB</sub> = 0</td>
<td>FC<sub>OB</sub> = 0</td>
<td>FC<sub>OC</sub> = -2</td>
<td>FC<sub>OC</sub> = -2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Struct #1 Struct #2</td>
<td>FC<sub>OA</sub> = 0</td>
<td>FC<sub>OA</sub> = 1</td>
<td>FC<sub>OB</sub> = -1</td>
<td>FC<sub>OB</sub> = -1</td>
<td>FC<sub>OC</sub> = 1</td>
<td>FC<sub>OC</sub> = 0</td>
<td></td>
</tr>
</tbody>
</table>

10% 1.
69% 2.
9% 3.
12% 4.
Which molecule is nitric oxide?

1. NO
2. N$_2$O
3. HNO$_2$
Which molecule is nitric oxide?

1. NO
2. \(\text{N}_2\text{O} \)
3. \(\text{HNO}_2 \)
Determine the FC for the doubled-bonded F atom in our BF$_3$ Lewis Structure

1. +1
2. +2
3. 0
4. -1
5. -2
Determine the FC for the doubled-bonded F atom in our BF$_3$ Lewis Structure

1. +1
2. +2
3. 0
4. -1
5. -2
How many additional resonance structures are there for \(\text{CrO}_4^{2-}\)?

1. One
2. Two
3. Three
4. Four
5. Five
6. Six
7. Seven
8. Eight
9. Zero
How many additional resonance structures are there for CrO_4^{2-}?

1. One (3%)
2. Two (8%)
3. Three (6%)
4. Four (70%)
5. Five (3%)
6. Six (7%)
7. Seven (0%)
8. Eight (1%)
9. Zero (3%)