Readings for today: Sections 2.1-2.3 – Ionic Bonds, Sections 2.14-2.16 - The Strengths and Lengths of Covalent Bonds
Read for Lecture #10: Section 2.5 – 2.8 Lewis Structures (Same sections in 5th and 4th ed.)

Topics:

I. Trends in Periodic Table Continued
 A. IE (completed in lecture #8)
 B. Electron affinity (completed in lecture #8)
 C. Electronegativity
 D. Atomic and ionic radii and Isoelectronic atoms

II. Ionic bonds

III. Covalent bonds

IV. Polar Covalent bonds

C. ELECTRONEGATIVITY (χ)

Electronegativity is the net ability of an atom to attract an electron from another atom. Linus Pauling first proposed this idea in 1932.

Mulliken's electronegativity scale developed two years later is conceptually easier.

electronegativity (χ) ∝ (_____ + _____)

An atom with high electronegativity is an electron _________________.
An atom with low electronegativity is an electron _________________.
In their own words:
Bacteria have developed resistance to many antibiotics, and there is need for current and future scientists to develop new types of antibiotics. Kateryna discusses her research on enzymes that catalyze a carbon-chlorine bond-formation, and how taking advantage of chlorine’s electronegativity may lead to new medications to fight bacteria and other “bugs” that make us sick.

Electronegativity in Drug Design: Fluorine Atoms in Drugs
Although carbon-fluorine (C-F) bonds are not known to be present in the human body, C-F bonds are incorporated into a number of drugs.

Why???
One reason is that F, due to its high electronegativity, can make a molecule electron __________ if the fluorine is appropriately positioned on an aromatic ring.

Since oxidation involves losing an electron, a drug that is electron-poor will be ______________ to oxidize.

Drugs are metabolized by a class of proteins in the liver called cytochrome P450 (or Cyp) enzymes.

Fluorination can increase a drug’s metabolic stability by making it less susceptible to oxidation by Cyp enzymes.

For a brief article on a strategy developed in the Buchwald lab at MIT for installing fluorine into medically relevant molecules, see http://web.mit.edu/newsoffice/2009/drug-synthesis-0813.html.

D. ATOMIC and IONIC RADII
The atomic size is defined as the value of r below which 90% of electron density is contained.
Z_e is an important determinant of atomic radius across the table and n is an important determinant going down. Z_e _________________ across the periodic table, and the atomic radius _________________.

n increases down the periodic table, and the atomic radius increases.

The radii of ions differ from the radii of their parent atom.

Cations (+ charged ions) have radii that are ___________ than their parent atoms. Anions (- charged ions) have radii that are larger than their parent atoms.

Like atomic radii, ionic radii increase within a group going down the periodic table.

The Role of Atomic and Ionic Radii in Ion Channel Selectivity

Ion channels

* prevalent in ______________ and muscle cells
* regulate the influx of ions into cells.
* enable rapid electrical signaling in neurons.
* are selective for specific ion.

Order the following from smallest to largest: Na$^+$, K$^+$, K$^-$.

Sodium ion channels are selective for Na$^+$ in the presence of other ions, including K$^-$.

Sodium channels include a tiny pore (~0.4 nm wide) that is just wide enough to accommodate a sodium ion with an associated water molecule.

Too small for potassium ions!

ISOELECTRONICATOMS / IONS have the same electron configuration.
For example, all 1s2 2s2 2p6 ions are isoelectronic with Ne.

$\text{____.} \text{____.} \text{____.} \text{Ne,} \text{____.} \text{____.} \text{____.}$

$\text{____.} \text{____.} \text{____.} \text{radius} \quad \text{____.} \text{____.} \text{____.} \text{radius}$

than neutral parent \quad \text{than neutral parent}
II. IONIC BONDS

Ionic bonds involve the complete \underline{transition} of (one or more) electrons from one atom to another with a bond resulting from the electrostatic attraction between the cation and anion.

Consider the formation of NaCl from the neutral atoms, Na and Cl.

\[
\begin{align*}
\text{Na} (g) & \rightarrow \text{Na} (g) + e^- & \Delta E = \underline{494} \text{ kJ/mol} \\
\text{Cl} + e^- & \rightarrow \text{Cl} (g) & \Delta E = -\text{EA} = \underline{\text{kj/mol}} \\
\text{Na} (g) + \text{Cl} (g) & \rightarrow \text{Na} (g) + \text{Cl} (g) & \Delta E = + \underline{\text{kJ/mol}} \\
\end{align*}
\]

\[\Delta E = \text{IE}_+ + (-\text{EA}_-) = 145 \text{ kJ/mol}\]

Problem: Na (g) + Cl (g) \(\rightarrow\) Na\(^+\) (g) + Cl\(^-\) (g) has a positive \(\Delta E\). It \underline{energy}.

Solution: Coulomb attraction.

\[
\begin{align*}
\text{Na} (g) + \text{Cl} (g) & \rightarrow \text{NaCl} (g) & \Delta E = -589 \text{ kJ/mol} \\
\end{align*}
\]

Net change in energy for the overall process:

\[
\begin{align*}
\text{Na} (g) + \text{Cl} (g) & \rightarrow \text{NaCl} (g) & \Delta E = \underline{\text{kJ/mol}} \\
\end{align*}
\]

The mutual attraction between the oppositely-charged ions releases energy. The net energy change for the formation of NaCl is a decrease in energy.

We can calculate the Coulomb attraction based on the distance between the two ions (assume here that the ions are point charges):

\[U(r) = \frac{Z_1Z_2e^2}{4\pi\varepsilon_0r}\]

for 2 unlike charges,
\(z\) = charge numbers of the ions and
\(e\) = absolute value of the charge of an e \((1.602 \times 10^{-19} \text{ C})\)

Calculate \(U(r)\) for Na\(^+\) and Cl\(^-\). NaCl has a bond length \((r) = 2.36\text{Å}\).

\[
\begin{align*}
U(r) & = \left(\frac{Z_1Z_2e^2}{4\pi\varepsilon_0r}\right)(1.602 \times 10^{-19} \text{ C}) \\
& = \frac{4\pi(8.854 \times 10^{-12} \text{ C} \cdot \text{m}^{-1})(2.36 \times 10^{-10} \text{ m})}{4\pi(8.854 \times 10^{-12} \text{ C} \cdot \text{m}^{-1})(2.36 \times 10^{-10} \text{ m})} \times \text{kJ/mol} \\
\end{align*}
\]

Convert to kJ/mol
\[U(r) = -9.774 \times 10^4 \text{ J} \times \underline{} \times \underline{} = \]

Simple ionic model predicts: \(\Delta E \) for forming \(\text{NaCl} (g) \) from \(\text{Na}(g) + \text{Cl}(g) = -444 \text{ kJ/mol} \)

Experiments measure: \(\Delta E \) for forming \(\text{NaCl} (g) \) from \(\text{Na}(g) + \text{Cl}(g) = -411 \text{ kJ/mol} \)

The discrepancy results from the following approximations:

- ignored repulsive interactions. Result: \(\underline{} \Delta E_{\text{ionic}} \) than experimental value.
- treated \(\text{Na}^+ \) and \(\text{Cl}^- \) as \(\underline{} \).
- ignored quantum mechanics.

This simple model is applicable only to very ionic bonds.

III. COVALENT BONDS

Chemical bonds form between atoms when the arrangement of the nuclei and electrons of the bonded atoms results in a \(\underline{} \) (more negative) energy than that for the separate atoms.

A **covalent bond** is a pair of electrons \(\underline{} \) (sometimes equally, sometimes not) between two atoms. Covalent bonds form between nonmetals.

In bonding, \(r = \text{distance between nuclei} \).

We can plot the energy of the two H-atoms as a function of internuclear distance, \(r \).
$\Delta E_d = \text{dissociation energy}$, the energy required to separate bonded atoms (a measure of bond strength).

ΔE_d for H$_2$ = 424 kJ/mol

We can compare the bond strengths.

Compare the N-N bond in H,N-NH$_2$ and N=N:

Which bond is stronger? __________ (deeper energy well)

Which bond is shorter? __________

Carbon monoxide has one of the strongest bonds (dissociation energy = 1062 kJ/mol) and I$_2$ has one of the weakest (dissociation energy = 139 kJ/mol).

IV. POLAR COVALENT BONDS/POLAR MOLECULES

A polar covalent bond is an unequal sharing of e^-s between two atoms with different electronegativities (χ). In general, a bond between two atoms with an χ difference of $>$ _____ and $<$ _____ (on the Pauling scale) is considered polar covalent.

Polar molecules have a non-zero net dipole moment.

\[
\begin{align*}
\text{O} & \quad \text{C} & \quad \text{O} \\
\text{CO}_2 & \\
\text{O} & \quad \text{H} & \quad \text{H} \\
\text{H}_2\text{O} & \\
\end{align*}
\]

In large organic molecules and in biomolecules, we often consider the number of polar groups within the molecule. For example: which vitamin contains a higher number of polar bonds? vitamin _______
Vitamin A
___________ soluble

Vitamin B9 (_______________)
___________ soluble