The following graph of
$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$ describes a reaction in which:

1. $\Delta H^\circ > 0$ and $\Delta S^\circ > 0$
2. $\Delta H^\circ < 0$ and $\Delta S^\circ < 0$
3. $\Delta H^\circ < 0$ and $\Delta S^\circ > 0$
4. $\Delta H^\circ > 0$ and $\Delta S^\circ < 0$
The following graph of \(\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \) describes a reaction in which:

1. \(\Delta H^\circ > 0 \) and \(\Delta S^\circ > 0 \)
2. \(\Delta H^\circ < 0 \) and \(\Delta S^\circ < 0 \) [Corrected]
3. \(\Delta H^\circ < 0 \) and \(\Delta S^\circ > 0 \)
4. \(\Delta H^\circ > 0 \) and \(\Delta S^\circ < 0 \)
\[\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g}) \]

\[K = 1.9 \times 10^{-4} \text{ at } 400^\circ\text{C} \]

\[\text{PN}_2 = 5.5 \text{ bar, PH}_2 = 2.2 \text{ bar, PNH}_3 = 1.1 \text{ bar at } 400^\circ\text{C} \]

Which direction will the reaction go?

1. toward products, since \(Q < K \)
2. toward products, since \(Q > K \)
3. toward reactants, since \(Q > K \)
4. toward reactants, since \(Q < K \)
\[\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g}) \]

\[K = 1.9 \times 10^{-4} \text{ at } 400^\circ\text{C} \]

\[\text{PN}_2 = 5.5 \text{ bar}, \quad \text{PH}_2 = 2.2 \text{ bar}, \quad \text{PNH}_3 = 1.1 \text{ bar} \text{ at } 400^\circ\text{C} \]

Which direction will the reaction go?

1. toward products, since Q < K
2. toward products, since Q > K
3. toward reactants, since Q > K
4. toward reactants, since Q < K
Which is the correct expression for K for the following reaction:

\[2\text{NO}_2 \,(g) \rightarrow \text{N}_2\text{O}_4\,(g) \]

1. \(\frac{(\text{PNO}_2)}{(\text{PN}_2\text{O}_4)}\)
2. \(\frac{(\text{PNO}_2)^2}{(\text{PN}_2\text{O}_4)}\)
3. \(\frac{(\text{PN}_2\text{O}_4)}{(\text{PNO}_2)}\)
4. \(\frac{(\text{PN}_2\text{O}_4)}{(\text{PNO}_2)^2}\)
Which is the correct expression for K for the following reaction:

$$2\text{NO}_2 \ (g) \rightarrow \text{N}_2\text{O}_4\ (g)$$

1. $\left(\text{PNO}_2\right)/\left(\text{PN}_2\text{O}_4\right)$
2. $\left(\text{PNO}_2\right)^2/\left(\text{PN}_2\text{O}_4\right)$
3. $\left(\text{PN}_2\text{O}_4\right)/\left(\text{PNO}_2\right)$
4. $\left(\text{PN}_2\text{O}_4\right)/\left(\text{PNO}_2\right)^2$

4. $\left(\text{PN}_2\text{O}_4\right)/\left(\text{PNO}_2\right)^2$
$\Delta G^\circ = -RT \ln K$ or $K = \exp \left[-\Delta G^\circ / RT \right]$

K is large if ΔG° is...

1. negative and small
2. negative and large
3. positive and small
4. positive and large
\[\Delta G^\circ = -RT \ln K \quad \text{or} \quad K = \exp \left[-\frac{\Delta G^\circ}{RT} \right] \]

K is large if \(\Delta G^\circ \) is...

1. negative and small
2. negative and large
3. positive and small
4. positive and large
Removing Product

If you remove product, what happens?

1. $Q<K$. The reaction shifts to the right toward product.
2. $Q>K$. The reaction shifts to the right toward product.
3. $Q<K$. The reaction shifts to the left toward reactants.
4. $Q>K$. The reaction shifts to the left toward reactants.
Removing Product

If you remove product, what happens?

1. Q<K. The reaction shifts to the right toward product.
2. Q>K. The reaction shifts to the right toward product.
3. Q<K. The reaction shifts to the left toward reactants.
4. Q>K. The reaction shifts to the left toward reactants.