LETTURE 21

1. Using the values of K_b provided, calculate the pH and $[OH^-]$ for each of the solutions below:

 (a) 0.30 M ammonia ($K_b = 1.8 \times 10^{-5}$)
 (b) 0.54 M hydroxylamine ($K_b = 1.1 \times 10^{-8}$)

 (a) $[OH^-] = 2.3 \times 10^{-3}$ M; \(pH = 11.36\) (or 11.37)
 (b) $[OH^-] = 7.7 \times 10^{-5}$ M; \(pH = 9.89\)

2. The following reactions are important for buffer creation in biological chemistry labs. Identify the conjugate acid-base pairs.

 (a) $C_4H_9(OH)_2NH_2 (aq) + H_2O (l) \rightleftharpoons C_4H_9(OH)_3NH^+ (aq) + OH^- (aq)$
 (b) $HPO_4^{2-} (aq) + HCl (aq) \rightleftharpoons H_2PO_4^- (aq) + Cl^- (aq)$
 (c) $CH_3COOH (aq) + H_2O (aq) \rightleftharpoons CH_3COO^- (aq) + H_3O^+ (aq)$

 (a) As written, $C_4H_9(OH)_2NH_2$ is the base and $C_4H_9(OH)_3NH^+$ (aq) is its conjugate acid. H_2O is the acid and OH^- is its conjugate base.
 (b) As written, HPO_4^{2-} is the base and $H_2PO_4^-$ is its conjugate acid. HCl is the acid and Cl^- is its conjugate base.
 (c) As written, CH_3COOH is the acid and CH_3COO^- is its conjugate base. H_2O is the base and H_3O^+ is its conjugate acid.

3. Ketoacidosis is a serious medical condition caused by a build up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95. Determine the K_a of acetoacetic acid.

 2.6×10^{-4}