5.111 Lecture Summary #30 Monday, November 24, 2014

Reading for Lecture #31: 14.6, 17.7 in 5th ed and 13.6, 17.7 in 4th ed.

Topic: Introduction to Kinetics

I. Rates of Chemical Reactions

II. Rate Expressions and Rate Laws

Kinetics Versus Thermodynamics

When considering a chemical reaction, one must ask whether the reaction will go forward spontaneously (thermodynamics), and ______________ the reaction will go (kinetics).

Stable/unstable refers to ______________ (________________ tendency to decompose)

Labile/nonlabile (inert) refers to the ______________ at which this tendency is realized

Rate is important. A chemical kinetics experiment measures the rate at which the concentration of a substance taking part in a chemical reaction changes with time.

Factors affecting rates of chemical reactions

Let’s consider the oscillating clock reaction

To understand this reaction, one must consider thermodynamics, chemical equilibrium, acid-base, oxidation-reaction, kinetics, and the influence of oxidation and liganded state to color.

The overall reaction is:

\[
\text{IO}_3^- + 2 \text{H}_2\text{O}_2 + \text{CH}_2(\text{CO}_2\text{H})_2 + \text{H}^+ \rightarrow \text{ICH(}\text{CO}_2\text{H})_2 + 2 \text{O}_2 + 3 \text{H}_2\text{O}
\]

Its mechanism involves multiple steps, including:

(a) \[
\text{IO}_3^- + \Gamma + 2 \text{H}_2\text{O}_2 + 2 \text{H}^+ \rightarrow 2 \text{O}_2 + 3 \text{H}_2\text{O} + \text{I}_2
\] (spontaneous when [I\text{\textsubscript{2}}] is low)

(b) \[
\text{I}_2 + \text{CH}_2(\text{CO}_2\text{H})_2 \rightarrow \text{ICH(}\text{CO}_2\text{H})_2 + \text{H}^+ + \Gamma
\] (spontaneous when [I\text{\textsubscript{2}}] is high)

Reaction (a): addition of IO\textsubscript{3}- and \Gamma to hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) under acidic conditions, turns a clear solution to amber (\text{I}^- is clear and I\textsubscript{2} is amber).

Reaction (b): addition of I\textsubscript{2} (I\textsubscript{2} is amber) to malonic acid (CH\textsubscript{2}(CO\textsubscript{2}H)\textsubscript{2}), generates a complex that is blue. Thus, the color of I depends on both oxidation and liganded state.

Let’s think about the oxidation-reduction processes in Reaction (a):

I in IO\textsubscript{3}- is being ______________ to I\textsubscript{2}; \Gamma is being ______________ to I\textsubscript{2};

O in H\textsubscript{2}O\textsubscript{2} is being ______________ to O\textsubscript{2}; O in H\textsubscript{2}O\textsubscript{2} is being ______________ to H\textsubscript{2}O.

With a large (+) \(E^\circ \), H\textsubscript{2}O\textsubscript{2} is

The reaction rate is also sensitive to temperature.
I. Rates of Chemical Reactions

Measuring average reaction rates
Consider: \(\text{NO}_2 (g) + \text{CO} (g) \rightarrow \text{NO} (g) + \text{CO}_2 (g) \)

Can monitor the changes in concentration of NO average rate = \(\frac{\text{change in concentration}}{\text{change in time}} \)

average rate = \(\frac{0.0288 - 0.0160 \text{ M}}{150. - 50. \text{ sec}} \)

average rate depends on time interval chosen

Measuring instantaneous reaction rates
Consider: \(\text{NO}_2 (g) + \text{CO} (g) \rightarrow \text{NO} (g) + \text{CO}_2 (g) \)

Instantaneous rate = \(\lim_{\Delta t \to 0} \frac{[\text{NO}]_t + \Delta t - [\text{NO}]_t}{\Delta t} = \frac{d[\text{NO}]}{dt} \)

As \(\Delta t \) approaches 0, the rate becomes the slope of the line tangent to the curve at time \(t \).

Instantaneous rate at \(t=150 \text{ sec} \) is

\[
\frac{0.0326 - 0.0249 \text{ M}}{200. -100. \text{ sec}} = 7.7 \times 10^{-5} \text{ M s}^{-1}
\]

Initial rate = Instantaneous rate at time equals ______ sec
Rate expressions

Consider again: \(\text{NO}_2 (g) + \text{CO} (g) \rightarrow \text{NO} (g) + \text{CO}_2 (g) \)

Can monitor NO or CO\(_2\) increase or NO\(_2\) or CO decrease

\[
\text{rate} = \frac{-d[\text{NO}_2]}{dt} = \frac{-d[\text{CO}]}{dt}
\]

Assuming no intermediate species and/or that the concentration of intermediates is independent of time

Generally \(a\text{A} + b\text{B} \rightarrow c\text{C} + d\text{D} \)

\[
\text{rate} = \frac{-1}{a} \frac{d[\text{A}]}{dt} = \frac{-1}{b} \frac{d[\text{B}]}{dt} = \frac{1}{c} \frac{d[\text{C}]}{dt} = \frac{1}{d} \frac{d[\text{D}]}{dt}
\]

Example \(2\text{HI} (g) \rightarrow \text{H}_2 (g) + \text{I}_2 (g) \)

\[
\text{rate} = \frac{-1}{2} \frac{d[\text{HI}]}{dt} = \frac{1}{2} \frac{d[\text{H}_2]}{dt} = \frac{1}{2} \frac{d[\text{I}_2]}{dt}
\]

II. Rate Laws

The rate law is the relationship between the rate and the concentration, which are related by a proportionality constant, \(k \), called the rate constant.

\(a\text{A} + b\text{B} \rightarrow c\text{C} + d\text{D} \)

\[\text{rate} = k [\text{A}]^m [\text{B}]^n \]

\(m \) and \(n \) are order of reaction in \(\text{A} \) and \(\text{B} \), respectively

\(k \) is the rate constant

Truths about rate laws

(1) Rate law is a result of experimental observation. You CANNOT look at the stoichiometry of the reaction and predict the rate law (unless the reaction is an elementary reaction - we will come back to this later).

(2) The rate law is not limited to reactants. It can have a product terms, i.e., \(\text{rate} = k[A]^m[B]^n[C]^c \)
(3) For rate = \(k[A]^m[B]^n \), \(m \) is the order of reaction in A, \(n \) is the order of reaction in B. \(m \) and \(n \) can be integers, fractions, negative or positive.

\[
\begin{align*}
m = 0 & \quad \text{Double concentration/} \\
m = \frac{1}{2} & \quad \text{Double concentration/} \\
m = 1 & \quad \text{First order} \quad k[A] \quad \text{Double concentration/} \\
m = 2 & \quad \text{Second order} \quad k[A]^2 \quad \text{Double concentration/} \text{Triple concentration/} \\
m = -1 & \quad \text{Double concentration/} \\
m = -\frac{1}{2} & \quad \text{Double concentration/}
\end{align*}
\]

(4) The overall reaction order is the sum of the exponents in the rate law. For rate = \(k[A]^2[B] \), the overall reaction order is ________ order.

_______ order in A and _______ order in B

(5) The units for \(k \) vary. Determine units for \(k \) by considering units for rate and for concentration.

Integrated Rate Laws

Measuring initial rates can be difficult because it involves determining ________ changes in concentrations that occur during short intervals in time.

An alternative is to use the integrated rate law, which expresses concentrations directly as a function of time.
Integrated first-order rate law

First Order \(A \rightarrow B \)

rate \(= \frac{-d[A]}{dt} = k[A] \)

separate concentration and time terms

\[
\int_{[A]_0}^{[A]_t} \frac{1}{[A]} \cdot d[A] = -k \int_0^t dt
\]

\[
\ln [A]_t - \ln [A]_0 = -kt \quad \text{or} \quad \ln [A]_t = -kt + \ln [A]_0
\]

Equation for straight line

Let’s plot \(\ln [A]_t \) versus time

\[
\ln \frac{[A]_t}{[A]_0} = -kt
\]

\[
\frac{[A]_t}{[A]_0} = e^{-kt}
\]

\[
[A]_t = [A]_0 e^{-kt}
\]

Integrated 1st order rate law

Rate constants can be determined from experiment by plotting data in this manner.
First-order Half-life

Half-life is the time it takes for the original concentration to be reduced by half (______).

From above \[\ln \left(\frac{[A]_t}{[A]_0} \right) = -kt \]

\[\ln \left(\frac{[A]_0}{2} \right) = -kt_{1/2} \]

\[\ln 1/2 = -kt_{1/2} \]

\[-0.6931 = -kt_{1/2} \]

\[t_{1/2} = \frac{0.6931}{k} \]

First order half life ________________
depend on concentration.

Half life depends on k, and k depends on the material in question.

For the same material does it take longer to go from 1 ton to a \(\frac{1}{2} \) ton or 1 gram to a \(\frac{1}{2} \) gram?

Equation Sheet Exam 4

\[c = 2.9979 \times 10^8 \text{ m/s} \]
\[h = 6.6261 \times 10^{-34} \text{ J s} \]
\[N_A = 6.02214 \times 10^{23} \text{ mol}^{-1} \]
\[R = 8.314 \text{ J/(K mol)} \]
\[1 \text{ eV} = 1.60218 \times 10^{-19} \text{ J} \]
\[K_w = 1.00 \times 10^{-14} \text{ at 25.0}^\circ \text{C} \]
\[14.00 = \text{pH} + \text{pOH} \text{ at 25.0}^\circ \text{C} \]
\[\aleph (\text{Faraday's constant}) = 96,485 \text{ C mol}^{-1} \]

<table>
<thead>
<tr>
<th>Electromagnetic Spectrum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violet ~ 400-430 nm</td>
</tr>
<tr>
<td>Blue ~ 431-490 nm</td>
</tr>
<tr>
<td>Green ~ 491-560 nm</td>
</tr>
<tr>
<td>Yellow ~ 561-580 nm</td>
</tr>
<tr>
<td>Orange ~ 581-620 nm</td>
</tr>
<tr>
<td>Red ~ 621-700 nm</td>
</tr>
</tbody>
</table>

Complementary Colors: red/green, blue/orange, yellow/violet

\[\Gamma < \text{Br}^- < \text{Cl}^- \] (weak field ligands)
\[< \text{F}^- < \text{OH}^- < \text{H}_2\text{O} \] (intermediate)
\[< \text{NH}_3 < \text{CO} < \text{CN}^- \] (strong field ligands)

1 Coulomb • Volt = 1 Joule
1 Bq = 1 nuclei/sec
1 A = 1 C/s \hspace{1cm} 1 W = 1 J/s
\[\ln = 2.3025851 \log \]
1 J = 1 kgm²s⁻²
\[x = \frac{-b \pm (b^2 -4ac)^{1/2}}{2a} \]
\[a \cdot x^2 + b \cdot x + c = 0 \]
\[E = h \nu = \frac{h c}{\lambda} \]
\[c = \nu \lambda \]
\[\Delta G = \Delta H - T \Delta S \]
\[\Delta G = \Delta G^\circ + R T \ln Q \]
\[\Delta G^\circ = -RT \ln K \]
\[\Delta G = RT \ln Q/K \]
\[\ln \left(\frac{K_2}{K_1} \right) = - \frac{(\Delta H^\circ/R)(1/T_2 - 1/T_1)}{\Delta S} \]
\[\text{pH} = pK_a - \log (HA/A^-) \]
\[\text{pH} = -\log [\text{H}_3\text{O}^+] \]
\[\text{pOH} = -\log [\text{OH}^-] \]
\[K_w = K_a K_b \]
\[pK = -\log K \]
\[Q = It \]
\[\Delta G^\circ_{\text{cell}} = -(n)(\aleph) \Delta E^\circ_{\text{cell}} \]
\[\Delta E^\circ_{\text{cell}} = E^\circ(\text{cathode}) - E^\circ(\text{anode}) \]
\[\Delta E^\circ_{\text{cell}} = E^\circ(\text{reduction}) - E^\circ(\text{oxidation}) \]
\[\Delta E_{\text{cell}} = E^\circ_{\text{cell}} - (RT/n\aleph) \ln Q \]
\[RT/\aleph = 0.025693 \text{ V at 25.0 } ^\circ \text{C} \]
\[\aleph/RT = 38.921 \text{ V}^{-1} \text{ at 25.0 } ^\circ \text{C} \]
\[\Delta E_{\text{cell}} = E^\circ_{\text{cell}} - [(0.025693 \text{ V})(\ln Q)/n] \text{ at 25.0}^\circ \text{C} \]
\[\Delta E_{\text{cell}} = E^\circ_{\text{cell}} - [(0.0592 \text{ V})(\log Q)/n] \text{ at 25.0}^\circ \text{C} \]
\[\ln K = (n\aleph/RT) \Delta E^\circ \]
\[A = A_o e^{-kt} \]
\[N = N_o e^{-kt} \]
\[A = kN \]
\[[A] = [A]_o e^{kt} \]
\[t_{1/2} = \ln 2 / k \]
\[1/[A] = 1/[A]_o + kt \]
\[t_{1/2} = 1 / k[A]_o \]