Lecture 12: Reactions of Alkenes

I. Finish Addition of H-X to an Alkene
 G. Epoxides
 1. Acid-catalyzed ring opening
 2. Base-catalyzed ring opening

 H. Cyclopropane
 1. CHCX₃, strong base
 2. Simmons-Smith

II. Preparation of:
 A. Alkyl halides
 1. CHCX₃, strong base
 2. Simmons-Smith
 B. Vicinal Dihalides
 C. Halohydrins
 D. Alcohols
 1. Acid-catalyzed hydration
 2. Oxymercuration-Reduction
 3. Hydroboration-Oxidation
 E. Ethers
 F. Alkanes
 I. cis-1,2-Diols
 1. OsO₄
 2. Cold, dilute KMnO₄
 J. Ketones, Aldehyes, Carboxylic Acids
 1. Alkene cleavage
 a. KMnO₄
 b. O₃ (oxidative and reducing)
 2. Diol cleavage

Suggested Reading: Chapter 7, 9.12-9.14
Suggested Problems: 7.23-7.45, 7.48-7.57

Carbocation Intermediate Summary

Stability - the more substituents on the carbocation, the more stable the carbocation, and the faster it can form (Hammond Postulate)

Regiospecificity - a reaction will take the path of the more stable carbocation intermediate

Markovnikov's Rule - when adding an electrophile to an alkene, H forms a sigma bond to the carbon with more H's, and the functional group forms a sigma bond to the carbon with more alkyl substituents

Rearrangements - if a carbocation can become more stable by rearranging, it will!
 - look for possible hydride shifts, methyl shifts, and ring expansions

Stereochemistry
 -syn and anti addition observed*
 - during the 1st step of the reaction, the electrophile can add to either face (top or bottom) of the alkene
 - during the 2nd step of the reaction, the nucleophile can add to either the top or bottom lobe of the empty p orbital of the carbocation

*Syn - the two ends of the double bond react from the same side
Ant - the two ends of the double bond react from opposite sides
Reaction Overview

Hydrogenation of Alkenes

Figure removed due to copyright reasons.