PRACTICE EXAM #3

Hour exam #3 will be held on Wednesday, November 15, from 12:05-12:55.

Books, notes, and calculators will not be allowed during the exam.

Molecular model kits will be allowed during the exam. You will be given a periodic table and blank pages.

Material Covered on Exam #3:
- Everything presented in lecture related to Amines, Carboxylic Acids, and Carboxylic Acid Derivatives
- Reaction and Drill Problems
- Problem Sets 5 and 6
- McMurry Chapters 20, 21, 24
- All 5.12 material.

The answer key will be posted on Monday
1. Rank the following acyl derivatives based on their reactivity as electrophiles toward hydroxide ion (1 = most reactive, 5 = least reactive).

```
Me O O O O O Me NMe2 Me O Me Me Cl Me O Me OMe
```

2. In the boxes, please provide the reagents for the illustrated transformations. More than one step may be required.

(a) 1. NaN₃
2. LiAlH₄ or
3. H₂O

(b) 1. HCN, Cat. KCN
2. LiAlH₄
3. H₂O

Figure by MIT OCW.
3. Please provide the requested products. If no reaction is expected, write “NR”.

- **1.** Li(t-BuO)₃AlH
 - n-BuCl
 - EtO -, EtOH

- **2.** workup

- **3.** excess EtMgBr
 - n-BuOMe
 - H₂SO₄, Na₂Cr₂O₇

- **4.** workup

- **5.** excess NaBH₄
 - n-BuOMe

- **6.** workup

- **7.** excess MeLi
 - n-BuOH

- **8.** workup

- **9.** EtO⁻, EtOH

- **10.** workup

- **11.** NR or

- **12.** OH

Figure by MIT OCW.
4. Please provide the requested reagents.

(a) n-Bu \text{CN} \rightarrow n\text{-Bu} - \text{NH}_2

1. Excess MeI
2. Ag_2O, \Delta
or
H_2O_2, \Delta

(b) Me \text{CH}_2 \rightarrow Me - \text{NMe}_2

(c) \text{CN} \rightarrow \text{Ar}

(d) n\text{-Bu} - \text{CN} \rightarrow n\text{-Bu} \text{CN}

(e) H^+ / H_2O
or
\text{OH} / H_2O

\text{OH} \rightarrow \text{n-Bu}-\text{OH}

Figure by MIT OCW.
5. (12 points) Consider the labeling experiment outlined below:

\[\text{MeCl} \xrightarrow{\text{H}_2\text{O}} \text{MeCl} \]

Stop the reaction at 50% conversion and examine the recovered acyl chloride for incorporation of \(\text{O} \)

\(\text{O} = \text{isotopically labeled oxygen (^{18}\text{O})} \)

(a) Please provide the mechanism for the hydrolysis reaction shown above, including the pathway for incorporation of \(\text{O} \) into the acyl chloride.

(b) What level of \(\text{O} \) incorporation ("high" or "low") you would expect to observe in the recovered acyl chloride? Explain briefly.

Very low incorporation of labeled Oxygen into acid chloride Cl\(^{-} \) is a much better leaving group than \(^{-} \text{OH} \). Hydrolysis will take place much faster than label incorporation.

\[k_2 \gg k_1 \]

(c) Based on your answer to part b, do you think the results of this labeling study definitively prove the mechanism of this reaction? Explain briefly.

No. It is impossible to definitely prove a mechanism incorporation of the label is consistent with both \(S_{\text{N}2} \) and addition elimination mechanisms.
6. (12 points) The hydrolysis of a nitrile (A) to a carboxylic acid (C) involves initial formation of a primary amide (B). Provide a detailed mechanism for each of the following transformations.

Name_______________

![Mechanism diagram](image-url)

Figure by MIT OCW.
7. Provide a mechanism for the Hofmann elimination. Please show all arrow pushing.
8. Provide a synthesis that will selectively convert A to B. Show all the key intermediates, and furnish all of the important reagents.
9. Provide synthesis for the following compounds. All of the carbons in the target molecules should be derived from the allowed starting materials. You may use any common reagents.