MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics & Kinetics
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Fundamental Equations, Absolute Entropy, and The Third Law

- **Fundamental Equations** relate functions of state to each other using 1st and 2nd Laws

\[dU = dq - p_{ext}dV \]

1st law with expansion work: \(dU = dq - p_{ext}dV \)

need to express \(dq \) in terms of state variables because \(dq \) is path dependent

Use 2nd law: \(dq^{rev} = TdS \)

For a reversible process \(p_{ext} = p \) and \(dq = dq^{rev} = TdS \)

So......

\[**dU = TdS - pdV** \]

This fundamental equation only contains state variables

Even though this equation was demonstrated for a reversible process, the equation is always correct and valid for a closed (no mass transfer) system, even in the presence of an irreversible process. This is because \(U, T, S, p, \) and \(V \) are all functions of state and independent of path.

AND The “best” or “natural” variables for \(U \) are \(S \) and \(V \).

\[**U(S,V)** \]
U(S,V)

From \(dU = TdS - pdV\) \(\Rightarrow\) **\((\frac{\partial U}{\partial S})_V = T ; (\frac{\partial U}{\partial V})_S = -p\)**

We can write similar equations for **enthalpy**

\(H = U + pV\) \(\Rightarrow\) \(dH = dU + d(pV) = dU + pdV + Vdp\)

inserting \(dU = TdS - pdV\)

\(\Rightarrow\) **\(dH = TdS + Vdp\)**

The natural variables for \(H\) are then **\(S\) and \(p\)**

H(S,p)

From \(dH = TdS + Vdp\) \(\Rightarrow\) **\((\frac{\partial H}{\partial S})_p = T ; (\frac{\partial H}{\partial p})_S = V\)**

We can use these equations to find how \(S\) depends on \(T\).

From \(dU = TdS - pdV\) \(\Rightarrow\) \(\left(\frac{\partial S}{\partial T}\right)_V = \frac{1}{T} \left(\frac{\partial U}{\partial T}\right)_V = \frac{C_v}{T}\)

From \(dH = TdS + Vdp\) \(\Rightarrow\) \(\left(\frac{\partial S}{\partial T}\right)_p = \frac{1}{T} \left(\frac{\partial H}{\partial T}\right)_p = \frac{C_p}{T}\)
Absolute Entropies

Absolute entropy of an ideal gas

From \(dU = TdS - pdV \) \(\Rightarrow \) \(dS = \frac{dU + pdV}{T} \)

At constant \(T \), \(dU = 0 \) \(\Rightarrow \) \(dS_T = \frac{pdV}{T} \)

For an ideal gas, \(pV = nRT \) \(\Rightarrow \) \(dS_T = \frac{nRdV}{V} \)

At constant \(T \) \(d(pV) = d(nRT) = 0 \) \(\Rightarrow \) \(pdV = -Vdp \)

So

\[
\frac{dS_T}{p} = -\frac{nRdp}{p}
\]

For an arbitrary pressure \(p \),

\[
S(p, T) = S(p^\circ, T) - \int_{p^\circ}^p \frac{nRdp}{p} = S(p^\circ, T) - nR \ln \left(\frac{p}{p^\circ} \right)
\]

where \(p^\circ \) is some reference pressure which we set at 1 bar.

\(\Rightarrow \) \(S(p, T) = S^\circ(T) - nR \ln p \) (p in bar)

\[
\bar{S}(p, T) = S^\circ(T) - R \ln p \quad (p \text{ in bar})
\]

But to finish, we still need \(S^\circ(T) \)!

Suppose we had \(S^\circ(0K) \) (standard molar entropy at 0 Kelvin)

Then using \(\frac{\partial S}{\partial T} \bigg|_p = \frac{C_p}{T} \) we should be able to get \(S^\circ(T) \)
Consider the following sequence of processes for the substance A:

\[A(s, 0K, 1\text{bar}) = A(s, T_m, 1\text{bar}) = A(\ell, T_m, 1\text{bar}) = A(\ell, T_b, 1\text{bar}) = A(g, T_b, 1\text{bar}) = A(g, T, 1\text{bar}) \]

\[\overline{S}(T, 1\text{bar}) = \overline{S}^0(0K) + \int_0^{T_m} C_p(s) \frac{dT}{T} + \frac{\Delta H_{\text{fus}}}{T_m} + \int_{T_m}^{T_b} C_p(\ell) \frac{dT}{T} + \frac{\Delta H_{\text{vap}}}{T_b} + \int_{T_b}^{T} C_p(g) \frac{dT}{T} \]

Since \(\Delta S^0 \) is positive for each of these processes, the entropy must have its smallest possible value at 0 K. If we take \(\overline{S}^0(0K) = 0 \) for every pure substance in its crystalline solid state, then we could calculate the entropy at any other temperature.

This leads us to the Third Law!!!

THIRD LAW:

First expressed as Nernst's Heat Theorem:

- Nernst (1905): As \(T \to 0 \) K, \(\Delta S \to 0 \) for all isothermal processes in condensed phases
More general and useful formulation by M. Planck:

- Planck (1911): As $T \to 0 \text{ K}$, $S \to 0$ for every chemically homogeneous substance in a perfect crystalline state

Justification:

1. It works!
2. Statistical mechanics (5.62) allows us to calculate the entropy and indeed predicts $\overline{S}(0\text{K}) = 0$.

This leads to the following interesting corollary:

It is impossible to decrease the temperature of any system to $T = 0 \text{ K}$ in a finite number of steps

How can we rationalize this statement?
Recall the fundamental equation, $dU = T \, dS - p \, dV$

$$dU = C_v \, dT$$ \text{For 1 mole of ideal gas, } P = RT/V

so \quad C_v \, dT = T \, dS - (RT/V) \, dV

$$dS = C_v \, d(\ln T) + R \, d(\ln V)$$

For a spontaneous adiabatic process which takes the system from T_1 to a lower temperature T_2,

$$\Delta S = C_v \, \ln (T_2/T_1) + R \, \ln (V_2/V_1) \geq 0$$

but if $T_2 = 0$, $C_v \, \ln (T_2/T_1)$ equals minus infinity!

Therefore $R \, \ln (V_2/V_1)$ must be greater than plus infinity, which is impossible. Therefore no actual process can get you to $T_2 = 0 \text{ K}$.

But you can get very very close!
In Prof. W. Ketterle's experiments on "Bose Einstein Condensates" (MIT Nobel Prize), atoms are cooled to nanoKelvin temperatures \((T = 10^{-9} \text{ K})\) ... but not to 0 K!

Another consequence of the Third Law is that

\[
\text{It is impossible to have } T=0K.
\]

How can we rationalize the alternate statement?

Consider the calculation of \(S\) starting at \(T=0K\)

\[
S(s,T,1\text{bar}) = \int_0^T \frac{C_p(s)\,dT}{T}
\]

to prevent a singularity at \(T=0\), \(C_p \to 0\) as \(T \to 0\) K

in fact, experimentally \(C_p = \gamma T + AT^3 + ...\)

That is, the heat capacity of a pure substance goes to zero as \(T\) goes to zero Kelvin and this is experimentally observed.

Combining the above with \(dT = dq_p/C_p\) , at \(T=0\) any infinitesimally small amount of heat would result in a finite temperature rise.

In other words, because \(C_p \to 0\) as \(T \to 0\) K, the heat \(dq_p\) needed to achieve a temperature rise \(dT\), \((dq_p=C_p\,dT)\) also goes to zero at 0 K. If you somehow manage to make it to 0 K, you will not be able to maintain that temperature because any stray heat from a warmer object nearby will raise the temperature above zero, unless you have perfect thermal insulation, which is impossible.
• Some apparent violations of the third law (but which are not !)

Any disorder at \(T = 0 \text{ K} \) gives rise to \(S > 0 \)

• For example in mixed crystals

\[
\Delta S_{\text{mix}} = -nR[X_A \ln X_A + X_B \ln X_B] > 0 \quad \text{Always !!! Even at T=0K}
\]

But a mixed crystal is not a pure substance, so the third law is not violated.

• Any impurity or defect in a crystal also causes \(S > 0 \) at \(0 \text{ K} \)

• Any orientational or conformational degeneracies such is in a molecular crystal causes \(S > 0 \) at \(0 \text{ K} \), for example in a carbon monoxide crystal, two orientations are possible:

\[
\begin{align*}
\text{CO} & \quad \text{CO} \\
\text{CO} & \quad \text{CO} \\
\text{CO} & \quad \text{CO} & \quad \text{CO} & \quad \text{O} & \quad \text{C} & \quad \text{CO} \\
\text{CO} & \quad \text{CO} & \quad \text{CO} & \quad \text{O} & \quad \text{C} & \quad \text{CO} \\
\text{CO} & \quad \text{CO} \\
\end{align*}
\]