The Gibbs Free Energy

• With the free energies

Helmholtz free energy $A = U - TS$

Gibbs free energy $G = H - TS$

we've introduced all our state functions. For closed systems,

$$
\begin{align*}
U(S,V) & \Rightarrow dU = TdS - pdV \\
H(S,p) & \Rightarrow dH = TdS + Vdp \\
A(T,V) & \Rightarrow dA = -TdS - pdV \\
G(T,p) & \Rightarrow dG = -TdS + Vdp
\end{align*}
$$

Fundamental equations

From

$$
\begin{align*}
dA & = \left(\frac{\partial A}{\partial T} \right)_V dT + \left(\frac{\partial A}{\partial V} \right)_T dV \\
dG & = \left(\frac{\partial G}{\partial T} \right)_p dT + \left(\frac{\partial G}{\partial p} \right)_T dp
\end{align*}
$$

and

$$
\begin{align*}
\left(\frac{\partial A}{\partial T} \right)_V & = -S \\
\left(\frac{\partial A}{\partial V} \right)_T & = -p \\
\left(\frac{\partial G}{\partial T} \right)_p & = -S \\
\left(\frac{\partial G}{\partial p} \right)_T & = V
\end{align*}
$$

The Maxwell relations:

$$
\frac{\partial^2 A}{\partial V \partial T} = \frac{\partial^2 A}{\partial T \partial V} \quad \text{and} \quad \frac{\partial^2 G}{\partial p \partial T} = \frac{\partial^2 G}{\partial T \partial p}
$$

now allow us to find how S depends on V and p.

$$
\Rightarrow \begin{align*}
\left(\frac{\partial S}{\partial V} \right)_T & = \left(\frac{\partial p}{\partial T} \right)_V \\
\left(\frac{\partial S}{\partial p} \right)_T & = -\left(\frac{\partial V}{\partial T} \right)_p
\end{align*}
$$

These can be obtained from an equation of state.
We can now also relate T and H to p-V-T data.

$$\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial S}{\partial V} \right)_T - p = T \left(\frac{\partial p}{\partial T} \right)_V - p$$

$$\left(\frac{\partial H}{\partial p} \right)_T = T \left(\frac{\partial S}{\partial p} \right)_T + V = V - T \left(\frac{\partial V}{\partial T} \right)_p$$

$\Rightarrow U$ and H from equations of state!

- For an ideal gas $pV = nRT$

$$\left(\frac{\partial p}{\partial T} \right)_V = \frac{nR}{V} = \frac{p}{T} \Rightarrow \left(\frac{\partial U}{\partial V} \right)_T = 0$$

$$\left(\frac{\partial V}{\partial T} \right)_p = \frac{nR}{p} = \frac{V}{T} \Rightarrow \left(\frac{\partial H}{\partial p} \right)_T = 0$$

This proves that for an ideal gas $U(T)$ and $H(T)$, functions of T only. We had assumed this was true from Joule and Joule-Thomson expansion experiments. Now we know it is rigorously true.

- For a van der Waals gas

$$\left(p + \frac{a}{V^2} \right) (V - b) = RT$$

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

$$\left(\frac{\partial U}{\partial V} \right)_T = \frac{RT}{V - b} - p = \frac{a}{V^2} \neq 0 \Rightarrow U(T,V)$$
• The special role of $\mathcal{G}(T,p)$: If you know $\mathcal{G}(T,p)$, you know everything!

$$S = -\left(\frac{\partial \mathcal{G}}{\partial T}\right)_p,$$

$$V = \left(\frac{\partial \mathcal{G}}{\partial p}\right)_T$$

$$H = G + TS \quad \Rightarrow \quad H = G - T\left(\frac{\partial \mathcal{G}}{\partial T}\right)_p$$

$$U = H - pV \quad \Rightarrow \quad U = G - T\left(\frac{\partial \mathcal{G}}{\partial T}\right)_p - p\left(\frac{\partial \mathcal{G}}{\partial p}\right)_T$$

$$A = U - TS \quad \Rightarrow \quad A = G - p\left(\frac{\partial \mathcal{G}}{\partial p}\right)_T$$

$$C_p = T\left(\frac{\partial S}{\partial T}\right)_p \quad \Rightarrow \quad C_p = -T\left(\frac{\partial^2 \mathcal{G}}{\partial T^2}\right)_p$$

Can get all the thermodynamic functions from $\mathcal{G}(T,p)$!

• $\mathcal{G}(T,p)$ for liquids, solids, and gases (ideal)

From $V = \left(\frac{\partial \mathcal{G}}{\partial p}\right)_T$

$$\Rightarrow \quad \bar{\mathcal{G}}(T, p_2) = \bar{\mathcal{G}}(T, p_1) + \int_{p_1}^{p_2} \bar{V} dp$$

• Liquids and solids $\Rightarrow \bar{V}$ is small

$$\bar{\mathcal{G}}(T, p_2) = \bar{\mathcal{G}}(T, p_1) + \bar{V}(p_2 - p_1) \approx \bar{\mathcal{G}}(T, p_1) \quad \Rightarrow \quad \bar{\mathcal{G}}(T)$$
• **Ideal gases**

\[
\bar{G}(T, p_2) = \bar{G}(T, p_1) + \int_{p_1}^{p_2} \frac{RT}{p} dp = \bar{G}(T, p_1) + RT \ln \frac{p_2}{p_1}
\]

Take \(p_1 = p^o = 1 \text{ bar} \)

\[
\bar{G}(T, p) = \bar{G}^o (T) + RT \ln \frac{p}{p_0} \quad \text{or} \quad \bar{G}(T, p) = \bar{G}^o (T) + RT \ln p
\]

(p in bar)

From \(S = -\left(\frac{\partial G}{\partial T} \right)_p \) \(\Rightarrow \quad S(T, p) = \bar{S}^o (T) - R \ln p \)