MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry
Fall, 2017

Professor Robert W. Field

FIFTY MINUTE EXAMINATION I

Thursday, October 5

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible Score</th>
<th>My Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
I. Tunneling and Pictures

V(x) = \infty \quad |x| > a/2 \quad \text{Regions I and V}
V(x) = 0 \quad a/4 \leq |x| \leq a/2 \quad \text{Regions II and IV}
V(x) = V_0 = \left[\frac{h^2}{8ma^2} \right] 9 \quad |x| < a/4 \quad \text{Region III}

The energy of the lowest level, E_n, n = 1 is near \(E_1^{(0)} = \left[\frac{h^2}{8ma^2} \right] 9 \) and the second level, E_n
n = 2, is near \(E_2^{(0)} = \left[\frac{h^2}{8ma^2} \right] 4 \).

A. (8 points) Sketch \(\psi_1(x) \) and \(\psi_2(x) \) on the figure above. In addition, specify below the qualitatively most important features that your sketch of \(\psi_1(x) \) and \(\psi_2(x) \) must display inside Region III and at the borders of Region III.
B. (3 points) What do you know about \(\psi_1(0) \) and \(\left. \frac{d\psi_1}{dx} \right|_{x=0} \) without solving for \(E_1 \) and \(\psi_1 \)?
(i) Is \(\psi_1(0) = 0 \)?
(ii) Does \(\psi_1(0) \) have the same sign as \(\psi_1(a/2) \)?
(iii) Is \(\left. \frac{d\psi_1}{dx} \right|_{x=0} = 0 \)?

C. (3 points) What do you know about \(\psi_2(0) \) and \(\left. \frac{d\psi_2}{dx} \right|_{x=0} \) without solving for \(E_2 \) and \(\psi_2 \)?
(i) Is \(\psi_2(0) = 0 \)?
(ii) Is \(\left. \frac{d\psi_2}{dx} \right|_{x=0} = 0 \)?

D. (3 points) In the table below, in the last column, place an X next to the mathematical form of \(\psi_1(x) \) in Region III.

<table>
<thead>
<tr>
<th></th>
<th>(e^{ikx})</th>
<th>(e^{-ikx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(e^{ikx})</td>
<td>(e^{-ikx})</td>
</tr>
<tr>
<td>(ii)</td>
<td>(e^{-ikx})</td>
<td>(e^{ikx})</td>
</tr>
<tr>
<td>(iii)</td>
<td>(\sin kx) or (\cos kx)</td>
<td>(\sin kx) or (\cos kx)</td>
</tr>
<tr>
<td>(iv)</td>
<td>(e^{ikx} + e^{-ikx})</td>
<td>(e^{ikx} + e^{-ikx})</td>
</tr>
<tr>
<td>(v)</td>
<td>(e^{ikx} - e^{-ikx})</td>
<td>(e^{ikx} - e^{-ikx})</td>
</tr>
<tr>
<td>(vi)</td>
<td>something else</td>
<td>something else</td>
</tr>
</tbody>
</table>

E. (3 points) Does the exact \(E_1 \) level lie above or below \(E_1^{(0)} \)?

F. (5 points) For the exact \(E_2 \) level, is the energy difference, \(|E_2 - E_2^{(0)}| \), larger or smaller than \(|E_1 - E_1^{(0)}| \)? Explain why.
(Blank page for Calculations)
II. Measurement Theory

(10 POINTS)

Consider the Particle in an Infinite Box "superposition state" wavefunction,

\[\psi_{1,2} = (1/3)^{1/2} \psi_1 + (2/3)^{1/2} \psi_2 \]

where \(E_1 \) is the eigen-energy of \(\psi_1 \) and \(E_2 \) is the eigen-energy of \(\psi_2 \).

A. (5 points) Suppose you do one experiment to measure the energy of \(\psi_{1,2} \)
Circle the possible result(s) of your measurement:
(i) \(E_1 \)
(ii) \(E_2 \)
(iii) \((1/3)E_1 + (2/3) E_2 \)
(iv) something else.

B. (5 points) Suppose you do 100 identical measurements to measure the energies of identical systems in state \(\psi_{1,2} \) What will you observe?
(Blank page for Calculations)
III. Semiclassical Quantization

(10 POINTS)

Consider the two potential energy functions:

\[V_1 \begin{cases}
|x| \leq a/2, & V_1(x) = -|V_0| \\
|x| > a/2, & V_1(x) = 0
\end{cases} \]

\[V_2 \begin{cases}
|x| \leq a/4, & V_2(x) = -2|V_0| \\
|x| > a/4, & V_2(x) = 0
\end{cases} \]

A. (5 points)

The semi-classical quantization equation below

\[
\left(\frac{2}{\hbar} \right) \int_{x_{(E)}}^{x_{(E)}} p_E(x) dx = n
\]

\[
p_E = \left[2m(E - V(x)) \right]^{1/2}
\]

describes the number of levels below \(E \). Use this to compute the number of levels with energy less than 0 for \(V_1 \) and \(V_2 \).

B. (5 points)

\(V_1 \) and \(V_2 \) have the same product of width times depth, \(V_1 \) is \((a)|V_0|\) and \(V_2 \) is \((a/2)(2|V_0|)\), but \(V_1 \) and \(V_2 \) have different numbers of bound levels. Which has the larger fractional effect, increasing the depth of the potential by \(X\% \) or increasing the width of the potential by \(X\% \)?
(Blank page for Calculations)
IV. Creation/Annihilation Operators (20 POINTS)

A. (2 points) Consider the integral

\[\int_{-\infty}^{\infty} \psi(x)^* a^\dagger \psi(x) \, dx. \]

For what values of \(v - v' \) will the integral be non-zero (these are called selection rules)?

B. (4 points) Let \(v' = 4 \) and \(v \) be the value determined in part A to give a non-zero integral. Calculate the value of the above integral (DO NOT SIMPLIFY!).

C. (4 points) Now consider the integral

\[\int_{-\infty}^{\infty} \psi(x)^* a^\dagger \psi(x) \, dx \]

Are the selection rules for \(v' - v \) the same as in part A? Is the value of the non-zero integral for \(v' = 4 \) the same as in part B? If not, calculate the value of the integral (UNSIMPLIFIED!).
D. (10 points) Derive the commutation rule \([\hat{N}, \hat{a}]\) starting from the definition of \(\hat{N}\).
V. $\langle x \rangle$, $\langle p \rangle$, σ_x, σ_p and Time Evolution of a Superposition State

(35 POINTS)

\[\hat{x} = \left[\frac{\hbar}{2\mu\omega} \right]^{1/2} (\hat{a}^\dagger + \hat{a}) \]

\[\hat{p} = \left[\frac{\hbar\mu\omega}{2} \right]^{1/2} i(\hat{a}^\dagger - \hat{a}) \]

A. (5 points) Show that $\hat{x}^2 = \left[\frac{\hbar}{2\mu\omega} \right] \left(\hat{a}^2 + \hat{a}^\dagger \hat{a} \right)^2 + 2\hat{N} + 1$.

B. (5 points) Derive a similar expression for \hat{p}^2. (Be sure to combine $\hat{a}^\dagger \hat{a}$ and $\hat{a} \hat{a}^\dagger$ terms into an integer times \hat{N} plus another integer.
C. (5 points) Evaluate σ_x and σ_p. (Recall that $\sigma_x = \left[\langle x^3 \rangle - \langle x \rangle^3 \right]^{1/2}$).

D. (5 points) Show, using your results for \tilde{x}^2 and \tilde{p}^2, that

$$\hat{H} = \frac{\tilde{p}^2}{2\mu} + \frac{k\tilde{x}^2}{2} = \hbar \left[\hat{N} + 1/2 \right].$$

(The contributions from \hat{a}^2 and \hat{a}^\dagger exactly cancel.)
E. (5 points) For $\Psi(x, t = 0) = c_0\psi_0 + c_1\psi_1 + c_2\psi_2$, write the time-dependent wavefunction, $\Psi(x,t)$.

F. (5 points) Assume that c_0, c_1, c_2 are real. Evaluate $\langle \hat{x} \rangle_t$ and show that $\langle x \rangle_t$ oscillates at angular frequency ω. [HINT: $2\cos\theta = e^{i\theta} + e^{-i\theta}$.]

G. (5 points) Evaluate $\langle \hat{x}^2 \rangle_t$. Show that $\langle x^2 \rangle_t$ includes a contribution that oscillates at an angular frequency of 2ω.
(Blank page for Calculations)
Some Possibly Useful Constants and Formulas

\[h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} \quad \hbar = 1.054 \times 10^{-34} \text{ J} \cdot \text{s} \]

\[c = 3.00 \times 10^8 \text{ m/s} \quad \epsilon_0 = 8.854 \times 10^{-12} \text{Cs}^2\text{kg}^{-1}\text{m}^{-3} \]

\[m_e = 9.11 \times 10^{-31} \text{ kg} \quad m_n = 1.67 \times 10^{-27} \text{ kg} \]

\[1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \quad e = 1.602 \times 10^{-19} \text{ C} \]

\[E = h\nu \quad a_0 = 5.29 \times 10^{-11} \text{ m} \quad e^{z i\theta} = \cos\theta \pm i\sin\theta \]

\[\bar{\nu} = \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \]

where \(R_H = \frac{m_e^4}{8\epsilon_0^2\hbar^3 c} = 109,678 \text{ cm}^{-1} \)

Free particle:

\[E = \frac{\hbar^2 k^2}{2m} \quad \psi(x) = A\cos(kx) + B\sin(kx) \]

Particle in a box:

\[E_n = \frac{\hbar^2 n^2}{8ma^2} = E_1 n^2 \quad \psi(x) = \left(\frac{2}{a} \right)^{1/2} \sin \left(\frac{n\pi x}{a} \right) \quad n = 1, 2, \ldots \]

Harmonic oscillator:

\[E_n = \left(n + \frac{1}{2} \right) \hbar\omega \quad [\text{units of } \omega \text{ are radians/s}] \]

\[\psi_0(x) = \left(\frac{\alpha}{\pi} \right)^{1/4} e^{-\alpha x^2/2} \quad \psi_1(x) = \frac{1}{\sqrt{2}} \left(\frac{\alpha}{\pi} \right)^{1/4} \left(2\alpha^{1/2} x \right) e^{-\alpha x^2/2} \quad \psi_2(x) = \frac{1}{\sqrt{8}} \left(\frac{\alpha}{\pi} \right)^{1/4} \left(4\alpha x^2 - 2 \right) e^{-\alpha x^2/2} \]

\[\hat{x} = \sqrt{\frac{\hbar}{m\omega}} \quad \hat{p} = \sqrt{\frac{1}{\hbar m\omega}} \quad [\text{units of } \omega \text{ are radians/s}] \]

\[a = \frac{1}{\sqrt{2}} (\hat{x} + i\hat{p}) \quad \hat{H} = a^\dagger a + \frac{1}{2} = \frac{\hbar}{\hbar\omega} \quad \hat{N} = a^\dagger a \]

\[a^\dagger = \frac{1}{\sqrt{2}} (\hat{x} - i\hat{p}) \quad 2\pi c\tilde{\omega} = \omega \quad [\text{units of } \tilde{\omega} \text{ are cm}^{-1}] \]
Semi-Classical

\[\lambda = \frac{h}{p} \]

\[p_{\text{classical}}(x) = \sqrt{2m(E - V(x))} \]

period: \(\tau = \frac{1}{\nu} = \frac{2\pi}{\omega} \)

For a thin barrier of width \(\varepsilon \) where \(\varepsilon \) is very small, located at \(x_0 \), and height \(V(x_0) \):

\[
H_{nn}^{(1)} = \int_{x_0 - \varepsilon/2}^{x_0 + \varepsilon/2} \psi_n^{(0)*}V(x)\psi_n^{(0)}dx = \varepsilon V(x_0)\left|\psi_n^{(0)}(x_0)\right|^2
\]