Hydrogen Radial Wavefunctions

The Hydrogen atom is special because it has electronic states and properties that scale with n and ℓ in a simple and global way. This is “structure” that is more than a collection of unrelated facts. H serves as our model for “electronic structure” of many-electron atoms, molecules, and possibly solids.

By showing how E, $\langle r^\sigma \rangle$ (size and shapes), $\langle n\ell | r | n'\ell' \rangle$ (general matrix element) scale with n and ℓ, it tells us the kind of behavior to look for in more complex systems.

* as a perturbation on H (quantum defects)
* as a hint of relationships useful for extrapolation, assignment, for recognizing when something behaves differently from naive expectations.

TODAY

1. Simplified Radial Equation
2. Boundary conditions at $r \to 0$ and $r \to \infty$
3. qualitative features of $R_{n\ell}(r)$
4. n-scaling of $\langle r^\sigma \rangle$
5. mathematical form of $R_{n\ell}(r)$
6. regular and irregular Coulomb functions
For any central force problem

\[H = \left[\frac{\hat{p}_r^2}{2\mu} + \frac{\ell^2}{2\mu r^2} \right] + V(r) \]

We know that \(\hat{H}, \ell^2, \ell_z \) commute, so spherical harmonics, \(Y_{\ell m}^\theta(\theta, \phi) \), are eigenfunctions of \(\hat{H} \) with eigenvalues \(\hbar^2 \ell(\ell + 1) \).

\[\psi(r, \theta, \phi) = R(r)Y_{\ell m}^\theta(\theta, \phi) \]

trial form for separation of \(\psi \)

\[\hat{H}\psi = \left(\frac{\hbar^2 \ell^2}{2\mu r^2} + V(r) \right) Y_{\ell m}^\theta(\theta, \phi) R(r) = E\psi \]

Operate on the \(Y_{\ell m}^\theta(\theta, \phi) \) angular wavefunction and move it through to left.

\[\hat{H}\psi = Y_{\ell m}^\theta(\theta, \phi) \left(\frac{\hbar^2 \ell^2}{2\mu r^2} + \frac{\hbar^2 \ell(\ell + 1)}{2\mu r^2} + V(r) \right) R(r) = E\psi \]

so we can take \(Y_{\ell m}^\theta(\theta, \phi) \) out of the Schrödinger Equation and we are left with a 1-D radial equation where the only trace of the angular part is the \(\ell \)-dependence of \(V_{\ell}(r) \), the effective potential energy function.

Since the differential equation depends on \(\ell \), \(R(r) \) must also depend on \(\ell \), thus \(R_{n\ell}(r) \) is the radial part of \(\psi \), and it will generally be an explicit function of two quantum numbers, \(n \) and \(\ell \).

Usually \(n \) specifies the number of radial nodes and \(\ell \) the number of angular nodes, but a special numbering convention for Hydrogen (and hydrogenic ions) causes a slight distortion of this rule.
The radial equation, when the explicit differential operator form of P_r^2 is derived and inserted, has the form
\[
\left\{ \left[-\frac{\hbar^2}{2\mu} \frac{d}{dr} \frac{1}{r} \right] + \left[\frac{\hbar^2 \ell(\ell + 1)}{2\mu r^2} + V(r) \right] \right\} R_{nl}(r) = E_{nl} R_{nl}(r)
\]

It is customary to simplify this equation by replacing $R_{nl}(r)$ by $\frac{1}{r} u_{nl}(r)$
\[R_{nl}(r) = \frac{1}{r} u_{nl}(r) \]

* equation looks simpler
* volume element looks simpler
* behavior as $r \to 0$ seems more familiar

insert $\frac{1}{r} u_{nl}(r)$ in place of $R_{nl}(r)$ and then multiply through on left by r
\[
\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{\hbar^2 \ell(\ell + 1)}{2\mu r^2} + V(r) - E_{nl} \right] u_{nl}(r) = 0
\]

looks like ordinary 1-D Schrödinger Equation.
Boundary condition:
\[u_{nl}(r) \to 0 \quad \text{as} \quad r \to 0 \quad \text{WHY? Because for all } \ell > 0, V(0) \to \infty. \]

exactly as if $V(r) = \infty$ $r \leq 0$, but of course $r < 0$ is impossible, so we had better be careful about behavior of $u_{nl}(r)$ and $R_{nl}(r)$ as $r \to 0$
Note also that \(d^3 r = r^2 \sin \theta \, drd\theta d\phi \)

\[
R^*_{n'\ell}, R_{n\ell} \quad r^2 \, dr = u^*_{n'\ell}(r)u_{n\ell}(r) \, dr
\]

So volume element looks just as in 1-D problem

Return to special situation as \(r \to 0 \).

Why do we care? It turns out that s-orbitals have \(R_{ns}(0) \neq 0 \) and that in ESR one measures “Fermi-contact” hyperfine structure which is the spin-density at specific nuclei. It is a direct measure of the ns atomic orbital character in each molecular orbital!

CTDL, p. 781

What is the worst possible divergence of \(R_{n\ell}(r) \) as \(r \to 0 \)?

For \(r \to 0 \), \(R_{n\ell}(r) \) will be dominated by \(r^s \) where \(|s|\) is as small as possible. This is the most strongly divergent part of \(R_{n\ell}(r) \), which is all we need to be concerned with as \(r \to 0 \).

Let \(R_{n\ell} \sim Cr^s \), where this is a good approximation at \(r \to 0 \).

Plug this definition into Schrödinger Equation

\[
\frac{d^2}{dr^2} r R_{n\ell}(r) = \frac{d^2}{dr^2} C r^{s+1} = (s+1)(s)C r^{s-1}
\]

\[
T_r = -\frac{\hbar^2}{2\mu} \frac{1}{r} \frac{d^2}{dr^2}
\]

\[
HR_{n\ell}(r) = -\frac{\hbar^2}{2\mu} C(s+1)(s)r^{s-2} + \frac{\hbar^2}{2\mu} C r^{s-2} + V(r)C r^{s} - E_{n\ell}C r^{s} = 0
\]

if \(V(r) \propto \frac{1}{r} \)

As \(r \to 0 \) \(V(r) \) rarely diverges more rapidly than \(1/r \), thus \(V(r)C r^s \) gives \(r^{-1} \).

Then, in the limit \(r \to 0 \), the coefficients of the \(r^{s-2} \) term (i.e. the most rapidly divergent term) must be \(= 0 \)

\[
-(s+1)s + \ell(\ell+1) = 0
\]

*This excludes the stronger divergence of the centrifugal barrier term in \(V_r(r) \).
satisfied if \(s = \ell \) or \(s = - (\ell + 1) \)

verify second possibility:
\[
s(s + 1) = (-\ell - 1)(-\ell - 1 + 1) = - (\ell + 1)(-\ell) = \ell(\ell + 1)
\]

In other words \(R_{n\ell}(r) \to r^\ell \) OR (if \(s = \pm (\ell + 1) \)) \(\frac{1}{r^{\ell + 1}} \) as \(r \to 0 \)

well behaved at \(r \to 0 \)

disaster even if \(\ell = 0 \)

Actually both of these possibilities satisfy the differential equation for
\(V(r) = \frac{1}{r} \) (known as the Coulomb – or H atom Hamiltonian), but the one that diverges as \(r \to 0 \) cannot satisfy the \(r \to 0 \) boundary condition for the H atom.

** Regular and Irregular Coulomb wavefunctions – we will return to these later in the context of Quantum Defect Theory.

So for now we insist that
\[
R_{n\ell}(0) \neq 0 \quad \text{special situation for } R_{ns}(r)
\]

\[
R_{n\ell > 0}(0) = 0
\]

\[
u_{n\ell}(0) = 0 \quad \text{for all } \ell
\]

(no special case for \(u_{ns}(r) \))
For Hydrogen

\[V_\ell(r) = + \frac{\hbar^2 \ell(\ell + 1)}{2\mu r^2} - \frac{e^2}{r} \]

\[e^2 \equiv \frac{q^2}{4\pi\varepsilon_0} \]

\[\mu = \frac{m_e m_p}{m_e + m_p} \approx m_e \]

What do we know from our study of 1-D problems?

WKB

\[\psi_{\text{envelope}} \propto p^{-1/2} \]

of nodes, placement of nodes, degeneracy, behavior at inner and outer turning points, location of inner and outer turning points

inner vs. outer part of \(u_{nl}(r) \) – where is the extra \(\frac{h}{2} \) of action acquired (associated with tunneling into nonclassical region)?

\[\text{recall } \int_{r_c(E)}^{r_s(E)} p(r)dr = \frac{h}{2}(n + 1/2) \]
5.73 Lecture #28

Find that \[E_{n\ell} = -\frac{\mathcal{R}}{n^2} \]

At turning point \[V_{\ell}(r) = E_{n\ell} \]

\[-\frac{\mathcal{R}}{n^2} = \frac{\hbar^2 \ell (\ell + 1)}{2\mu r_{\pm}^2} - \frac{\epsilon^2}{r_{\pm}} \]

solve for \(r_{\pm} \) as function of \(n \) and \(\ell \)

\[r_{\pm} = a_0 \left[n^2 \pm n(n^2 - \ell(\ell + 1))^{1/2}\right] \]

\[= a_0 n^2 \left[1 \pm \left(1 - \frac{\ell(\ell + 1)}{n^2}\right)^{1/2}\right] \]

Use this equation for the turning points to construct qualitatively correct cartoons of \(R_{n\ell}(r) \) in crucial regions.

Use Quadratic formula to find \(r_{\pm}(n) \)

\[a_0 = \frac{\hbar^2}{2\mu e^2} \quad \text{Bohr radius} \]

when \(\ell \ll n \), where are \(r_{r} \) and \(r_{\pm} \)?

surprising systematic degeneracy

\[\begin{align*}
3s & \quad 3p & \quad 3d \\
2s & \quad 2p \\
1s & \quad & \quad\text{etc.}
\end{align*} \]

\[E_{n\ell} \]

Because of pattern, we use \(n \) to label degenerate groups

\[E_{n\ell} = -\frac{\mathcal{R}}{n^2} \]

hence \(n \) is not # of radial nodes.
orbital # of radial nodes
1s 0
2s 1
2p 0 (because it is lowest solution to $\ell = 1$ equation)
3s 2
3p 1
3d 0

radial nodes = $(n - 1) - \ell$
angular nodal surfaces ℓ
total # nodes $n - 1$

\begin{align*}
 n & \quad \text{degeneracy} \\
 1 & \quad 1 \\
 2 & \quad 1 + (2\ell + 1) = 4 \\
 3 & \quad 1 + 3 + 5 = 9 \\
 \vdots & \\
 n & \quad n^2
\end{align*}

\text{n - scaling of $\langle r^\sigma \rangle$}

two limits: $\sigma < 0$ vs. $\sigma > 0$
determined near inner turning point $\sim n^{-3}$
Bohr model $r_{\text{nd}} = a_0 n^2$
(seen argument on next page)$\langle r^\sigma \rangle \sim a_0^\sigma n^{2\sigma}$

Expectation values of r^σ vs. transition moments and off--diagonal matrix elements of r^σ. Stationary phase.
$T = \frac{p^2}{2\mu} > \text{IP in the “inner region.”}$

Variation of T from $n = 6$ to $n = \infty < 3\%$

Variation of $p < 1.5\%$

DeBroglie $\lambda \sim \frac{\hbar}{p}$

Location of innermost node is n-independent. Because p is large and fractional change of p vs. n is negligible.

e^- comes into core region fast and leaves fast — Δt same for all n

Fraction of time inside core?

Time inside one period

$$= \frac{2(v/\lambda)^{-1}}{h} \frac{E_n - E_{n+1}}{E_n}$$

$$= \left[\frac{2h}{p} \right] \left[\frac{p}{m} \right] \approx \frac{4m\hbar}{\hbar \frac{2\delta R}{n^3}} \approx \frac{4m\hbar}{\hbar^2} \frac{p^2}{n^3}$$

Probability of finding e^- inside core $\propto n^{-3}$!
fraction of time inside $\sim n^{-3}$

amplitude of $\psi_{n\ell} \sim n^{-3/2}$ **inside core region**

Basis of all Rydberg scaling

inner lobe

\[
1\text{st node does not shift with } n \\
\text{amplitude in first lobe scales as } n^{-3/2}
\]

Astonishingly important!

all n, n' matrix elements of r^σ where $\sigma < 0$ scale as $(nn')^{-3/2}$!

Some matrix elements scale this way even when $\sigma > 0$.

McQuarrie, page 223

\[
R_{n\ell}(r) = -\left[\frac{(n - \ell - 1)!}{2n[(n + \ell)!]^3}\right]^{1/2} \left(\frac{2}{na_0}\right)^{\ell+3/2} r^\ell e^{-r/na_0} L_{n+1}^{2\ell+1}\left(\frac{2r}{na_0}\right) \text{ exponential (polynomials)}
\]

\[
\text{normalization} \rightarrow 0 \text{ as } r \rightarrow \infty
\]

Regular and Irregular Coulomb functions ($E \leq 0$)

- **regular** $f(E, \ell, r) \propto r^\ell$
 - $u(v, \ell, r) \sin \pi v - v(v, \ell, r)e^{i\pi v}$, which is an increasing exponential *except* when v is a positive integer. Need some other way to satisfy $r \rightarrow \infty$ boundary condition when v is not an integer.

- **irregular** $g(E, \ell, r) \propto r^{-i\ell}$
 - $-u(v, \ell, r) \cos \pi v + v(v, \ell, r)e^{i\pi(v+1/2)}$, which blows up.
 - $u(v, \ell, r)$ is an increasing exponential as $r \rightarrow \infty$
 - $v(v, \ell, r)$ is a decreasing exponential as $r \rightarrow \infty$

(see Gallagher, page 16)
\begin{align*}
\langle r \rangle &= \frac{1}{2} \left[3n^2 - \ell(\ell + 1) \right] \\
\langle r^2 \rangle &= \frac{n^2}{2} \left[5n^2 + 1 - 3\ell(\ell + 1) \right] \\
\langle 1/r \rangle &= \frac{1}{n^2} \\
\langle 1/r^2 \rangle &= \frac{1}{n^3(\ell + 1/2)} \\
\langle 1/r^3 \rangle &= \frac{1}{n^3(\ell + 1)(\ell + 1/2)\ell} \\
\langle 1/r^4 \rangle &= \frac{3n^2 - \ell(\ell + 1)}{2n^3(\ell + 3/2)(\ell + 1)(\ell + 1/2)\ell(\ell - 1/2)} \\
\langle 1/r^6 \rangle &= \frac{35n^4 - 5n^2\left[6\ell(\ell + 1) - 5 \right] + 3(\ell + 2)(\ell + 1)\ell(\ell - 1)}{8n^7(\ell + 5/2)(\ell + 2)(\ell + 3/2)(\ell + 1)(\ell + 1/2)\ell(\ell - 1/2)(\ell - 1/2)(\ell - 3/2)}
\end{align*}

Note! \begin{align*}
\langle r^\sigma \rangle &\quad \sigma < -1 \quad \text{scale as } n^{-3}! \\
\sigma &\quad \sigma > 0 \quad \text{scale as } n^{2\sigma}!
\end{align*}