JWKB QUANTIZATION CONDITION

Last time:

1. \(V(x) = \alpha x \)
 \(\phi(p) = N \exp \left[-\frac{i}{\hbar \alpha} (Ep - p^3/6m) \right] \)
 \(\psi(x) = Ai(z) \)
 * zeroes of Ai, Ai'
 * tables of Ai (and Bi)
 * asymptotic forms far from turning points

2. Semi-Classical Approximation for \(\psi(x) \)

 "classical wavefunction"

 * \(p(x) = [(E - V(x))2m]^{1/2} \)
 * \(\psi(x) = \left| \psi(x) \right|^{-1/2} \exp \left[\pm \frac{i}{\hbar} \int_{x}^{x'} p(x')dx' \right] \)
 * \(\psi \) without differential equation
 * quality behavior of integrals (stationary phase)
 * validity: \(\frac{dx}{dx} < < 1 \) — valid not too near turning point.

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals of the type \(\int_{x}^{x'} \psi_{i}^{*} \hat{O}_{p} \psi_{j} \ dx \). If \(\hat{O}_{p} \) is a slow function of \(x \), the phase factor is

\(\exp \left[\frac{i}{\hbar} \left[p_{i}(x') - p_{i}(x') \right] dx' \right] \). Take \(\frac{dx}{dx} = 0 \) to find \(x_{s.p.} \). \(\delta x \) is range about \(x_{s.p.} \) over which phase changes by \(\pm \pi/2 \). Integral is equal to \(I(x_{s.p.})\delta x \).]

Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

1. \(\psi_{\text{JWKB}} \) not valid (it blows up) near turning point — \(\therefore \) can’t match \(\psi \)'s on either side of turning point.

2. Near a turning point, \(x_{s}(E) \), every well-behaved \(V(x) \) looks linear

 \(V(x) \approx V(x_{s}(E)) + \frac{dV}{dx_{x=x_{s}}} (x - x_{s}) \)
 first term in a Taylor series.

 This makes it possible to use Airy functions for any \(V(x) \) near turning point.

updated 9/16/02 11:29 AM
3. asymptotic-Airy functions have matched amplitudes (and phase) across validity gap straddling the turning point.

4. ψ_{JWKB} for a linear $V(x)$ is identical to asymptotic-Airy!

TODAY

1. Summary of regions of validity for Airy, a-Airy, ℓ-JWKB, JWKB on both sides of turning point. This seems complicated, but it leads to a result that will be exceptionally useful!

2. WKB quantization condition: energy levels without wavefunctions!

3. compute dn_{ϵ}/dE (for box normalization — can then convert to any other kind of normalization)

4. trivial solution of Harmonic Oscillator $E_v = \hbar \omega (v+1/2)$ $v = 0, 1, 2…$

Non-lecture (from pages 6-12 to 6-14)

$$
\text{classical} \quad \psi_{\text{a-Airy}} = \pi^{-1/2} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \frac{\pi}{4} \right]
$$

$$
\text{forbidden} \quad \psi_{\text{a-Airy}} = \frac{\pi}{2} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (x-a)^{-1/4} \exp \left[-\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (x-a)^{3/2} \right]
$$

$$
\text{classical} \quad \psi_{\ell-\text{JWKB}} = C (a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \phi \right]
$$

$$
\text{forbidden} \quad \psi_{\ell-\text{JWKB}} = D (x-a)^{-1/4} \exp \left[-\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (x-a)^{3/2} \right]
$$

C, D, and ϕ are determined by matching.

These Airy functions are not normalized, but each pair has correct relative amplitude on opposite sides of turning point. ℓ-JWKB has same functional form as a-Airy. This permits us to link pairs of JWKB functions across invalid region and then use JWKB to extend $\psi(x)$ into regions further from turning point where linear approximation to $V(x)$ is no longer valid.

updated 9/16/02 11:29 AM
Regions of Validity Near Turning Point \(E = V(x_+(E)) \)

I CLASSICAL

- \(\psi(x) \)

II FORBIDDEN

- Common Validity of \(\ell \)-JWKB and \(a \)-AIRY

- Linear \(V(x) \) Exact

- Asymptotic AIRY

- \(\Psi_{\text{AIKY}} \)

- \(\Psi_{\ell \text{-JWKB}} \)

- \(\Psi_{a \text{-AIRY}} \)

Common region of validity for \(\psi_{a \text{-AIRY}} \) and \(\psi_{\ell \text{-JWKB}} \) — same functional form, specify amplitude and phase for \(\psi_{\text{JWKB}}(x) \) valid far from turning point for exact \(V(x) \)!
5.73 Lecture #7
Quantization of E in Arbitrary Shaped Wells

Already know how to splice across I, II and II, III but how do we match \(\psi \)'s in \(a < x < b \) region?

Region I

\[
\psi_{\text{JWKB}}(x) = \frac{C}{2} [p(x)]^{-1/2} e^{-\frac{1}{\hbar} \int_{a}^{x} |p(x')dx'|} \quad x < a
\]

(forbidden region)

(real, no oscillations)

Note carefully that argument of exp goes to \(-\infty\) as \(x \to -\infty \), thus \(\psi_I(-\infty) \to 0 \).

Note also that \((\psi/J) \) increases monotonically as \(x \) increases up to \(x = a \).

When you are doing matching for the first time, it is very important to verify that the phase of \(\psi \) varies with \(x \) in the way you want it to.
Region II \[\psi_{\text{JWKB}}^{\text{IIa}}(x) = C |p(x)|^{-1/2} \sin \left[\frac{1}{\hbar} \int_a^x p(x')dx' + \frac{\pi}{4} \right] \quad a < x < b \]

The first zero is located at an accumulated phase of \((3/4)\pi\) inside \(x=a\) because \((3/4 + 1/4)\pi = \pi\) and \(\sin \pi = 0\).

It does not matter that \(\psi^{\text{IIa}}\) is invalid near \(x = a, x = b\)

Note that phase increases as \(x\) increases - as it must. The \(\pi/4\) is the extra phase required by the AIRY splice across I,II. It reflects the tunneling of \(\psi(x)\) into the forbidden region.

PHASE starts at \(\pi/4\) in classical region and always increases as one moves (further into classical region) away from turning point. **NEVER FORGET!**

Region III \[\psi_{\text{JWKB}}^{\text{III}}(x) = \frac{C'}{2} |p(x)|^{-1/2} e^{-\frac{1}{\hbar} \int_a^x p(x')dx'} \quad x > b \]

Note that phase advances (i.e. the phase integral gets more positive) as \(x \to \infty\).

\(\psi_{\text{JWKB}}^{\text{III}}\) decreases monotonically to 0 as \(x \to +\infty\).

Region II again \[\psi_{\text{JWKB}}^{\text{IIb}}(x) = C' |p(x)|^{-1/2} \sin \left[\frac{1}{\hbar} \int_a^b p(x')dx' + \frac{\pi}{4} \right] \]

Note: argument of sine starts at \(\pi/4\) and increases as one goes from \(x = b\) inward. In other words, opposite to \(\psi^{\text{IIa}}\), the argument decreases from left to right!

But \(\psi^{\text{IIa}}(x) = \psi^{\text{IIb}}(x)\) for all \(a < x < b\)!

2 ways to satisfy this requirement

1. \(\sin(\theta(x)) = \sin \left[(\theta(x)) + (2n + 1)\pi \right] \) AND \(C = C'\)

\[\sin \theta = -\sin(-\theta), \quad \sin(\theta + (2n + 1)\pi) = -\sin \theta, \]
\[\therefore \sin \theta = \sin(-\theta + (2n + 1)\pi) \]
2. \(\sin(\theta(x)) = -\sin[-\theta(x) + 2n\pi] \quad \text{if} \quad C = -C' \)

now look at what the 2 cases require for the arguments

1. \(C = C' \)
 \[
 \left[\frac{1}{\hbar} \int_a^x p(x) \, dx + \frac{\pi}{4} \right] = - \left[\frac{1}{\hbar} \int_x^b p(x) \, dx + \frac{\pi}{4} \right] + (2n + 1)\pi
 \]
 \[
 \psi^{IIa} \quad \psi^{IIb}
 \]
 \[
 \theta(x) \quad -\theta(x) + (2n + 1)\pi
 \]
 \[
 \therefore \frac{1}{\hbar} \left[\int_a^x p(x) \, dx + \int_x^b p(x) \, dx \right] = (2n + 1)\pi - \frac{\pi}{4} \frac{\pi}{4}
 \]
 \[
 \int_a^b p(x') \, dx' = \hbar \pi [2n + 1] \quad \text{Quantization.}
 \]

2. \(C = -C' \)
 \[
 \int_a^b p(x') \, dx' = \hbar \pi [2n - 1/2]
 \]

combine the two:

\[
\int_a^b p(x') \, dx' = \hbar \pi (n + 1/2)
\]

WKB quantization condition. Most important result of this lecture.

\(n \) is \# of internal nodes because argument always starts at \(\pi/4 \) and increases inward to \((n + 3/4)\pi \) at other turning point.

<table>
<thead>
<tr>
<th>(n = 0)</th>
<th>(n = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(\pi/4) \rightarrow \sin(3\pi/4)) NO NODE!</td>
<td>(\sin(\pi/4) \rightarrow \sin(7\pi/4)) 1 node.</td>
</tr>
</tbody>
</table>

Node count tells what level it is. \(dpdx \) at arbitrary \(E_{\text{probe}} \) tells how many levels there are at \(E \leq E_{\text{probe}} \).
Density of States $\frac{dn}{dE}$

\[n(E) = \frac{2}{h} \int_{x_-(E)}^{x_+(E)} p_E(x') dx' - \frac{1}{2} \]

\[\frac{dn}{dE} = \frac{2}{h} \left[p_E(x_+) \frac{dx_+}{dE} - p_E(x_-) \frac{dx_-}{dE} + \int_{x_-}^{x_+} \frac{dp_E}{dE} \right] \]

(must take derivatives of limits of integration as well as integrand)

but $p_E(x_{\pm}) \equiv 0$

\[\therefore \frac{dn}{dE} = \frac{2}{h} \int_{x_-}^{x_+} \left[2m(E - V(x')) \right]^{1/2} dx' \]

\[
\frac{dn}{dE} = \frac{2}{h} \frac{1}{2} \left(2m \right) \int_{x_-}^{x_+} \left[2m(E - V(x')) \right]^{-1/2} dx'
\]

you show that, for harmonic oscillator

\[V(x) = \frac{1}{2} kx^2 \]

\[\omega = (k/m)^{1/2} \]

that \[\frac{dn}{dE} = \frac{1}{\hbar \omega} \] independent of E, thus period of h.o. is independent of E.

Non-lecture

for general box normalization

\[x \quad x_+ = \text{LLL:} \]

can still use this to compute $\frac{dn}{dE}$ because

\[\frac{dx_+}{dE} = 0 \] (even though $p_E(x_+) \neq 0$).

location of right hand turning point is independent of E.

Can always use WKB quantization to compute density of box normalized ψ_E's, provided that $E > V(x)$ everywhere except the 2 turning points.
Use WKB to solve a few “standard” problems. Since WKB is “semi-classical”, we expect it to work in the $n \to \infty$ limit. Could be some errors for a few of the lowest-n E_n’s.

Harmonic Oscillator

$V(x) = \frac{kx^2}{2}$

(k is force constant, not wave vector)

$p(x) = \left[2m\left(E - \frac{1}{2}kx^2\right)\right]^{1/2}$

At turning points, $V(x_t) = E$ and $p(x_t) = 0$,

thus, at turning points $x_\pm = \pm\left[2E_n/k\right]^{1/2}$

because $E_n = \frac{1}{2}kx_\pm^2$

$\hbar\pi(n + 1/2) = \int_{x_-=\left[-2E_n/k\right]^{1/2}}^{x_+=\left[2E_n/k\right]^{1/2}} \left[2m\left(E_n - kx^2/2\right)\right]^{1/2} dx$

Non-lecture: Dwight Integral Table 350.01

$t = \left[a^2 - x^2\right]^{1/2}$

$\int tdx = \frac{xt}{2} + \frac{a^2}{2}\sin^{-1}(x/a)$

here $t = 0$ at both x_+ and x_-

$I = (2mk/2)^{1/2} \int_{-\left[2E_n/k\right]^{1/2}}^{\left[2E_n/k\right]^{1/2}} \left[2E_n/k - x^2\right]^{1/2} dx$

$I = (2mk/2)^{1/2} \left(\frac{2E_n}{k}\right)^{1/2} \left[\sin^{-1}1 - \sin^{-1}(-1)\right]$\n
$I = \left(\frac{m}{k}\right)^{1/2} E_n \left((\pi/2) - (-\pi/2)\right) = \pi \left(\frac{m}{k}\right)^{1/2} E_n$

use the nonlecture result:

$\hbar\pi(n + 1/2) = \pi \left(\frac{m}{k}\right)^{1/2} E_n$

$E_n = \hbar \left(\frac{k}{m}\right)^{1/2} \omega (n + 1/2)$
I suggest you apply WKB Quantization Condition to the following problems: See Shankar pages 454-457.

- **Vee**
 \[V(x) = a|x| \]
 \[E_n \propto (n + 1/2)^{2/3} \]

- **quartic**
 \[V(x) = bx^4 \]
 \[E_n \propto (n + 1/2)^{4/3} \]

- **\(\ell = 0 \), H atom**
 \[V(x) = cx^{-1} \]
 \[E_n \propto n^{-2} \]

- **harmonic**
 \[V(x) = \frac{1}{2}kx^2 \]
 \[E_n \propto (n + 1/2)^{1/2} \]

What does this tell you about the relationship between the exponents \(m \) and \(\alpha \) in \(V_m \propto x^m \) and \(E_n \propto n^\alpha \)?

<table>
<thead>
<tr>
<th>power of x in V(x)</th>
<th>power of n in E(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4/3</td>
</tr>
</tbody>
</table>

Validity limits of WKB?

* **splicing** of \(\psi^{IIa}, \psi^{IIb} ? \)
 \[\frac{d^2V}{dx^2} \] can't be too large near the splice region

* **\(\psi_{JWKB} \)** is bad when
 \[\frac{d\lambda}{dx} \geq 1 \]
 \((\lambda \text{ changes by more than itself for } \Delta x = \lambda) \)

 near turning points and near the minimum of \(V(x) \)

* can't use WKB QC if there are more than 2 turning points

* near bottom of well \(\frac{d^2V}{dx^2} \) is not small and \(\frac{d\lambda}{dx} > 1 \)
 (near both turning points). However, most wells look harmonic near minimum and WKB gives exact result for harmonic oscillator - should be more OK than one has any right to expect.

* **semi-classical**: should be good in high-\(n \) limit. If exact \(E_n \) has same form as WKB QC at low-\(n \), WKB \(E_n \) is valid for all \(n \).

H.O., Morse Oscillator...

* updated 9/16/02 11:29 AM