Variational Method
(See CTDL 1148-1155, [Variational Method]
252-263, 295-307[Density Matrices])

Last time:
Quasi-Degeneracy \rightarrow Diagonalize a part of infinite H

* sub-matrix : $H^{(0)} + H^{(1)}$
* corrections for effects of out-of-block elements: $H^{(2)}$
 (the Van Vleck transformation)
* diagonalize $H_{\text{eff}} = H^{(0)} + H^{(1)} + H^{(2)}$

Coupled H-O's 2 : 1 ($\omega_1 \approx 2\omega_2$) Fermi resonance example: polyads

1. Perturbation Theory vs. Variational Method
2. Variational Theorem
3. Stupid nonlinear variation
4. Linear Variation \rightarrow new kind of secular Equation
5. Linear combined with nonlinear variation
6. Strategies for criteria of goodness — various kinds of variational calculations

1. Perturbation Theory vs. Variational Method

Perturbation Theory in effect uses ∞ basis set
goals: parametrically parsimonious fit model, H_{eff}
fit parameters (molecular constants) \leftrightarrow parameters that define $V(x)$
order - sorting $\frac{H_{nk}^{(1)}}{E_n^{(0)} - E_k^{(0)}} < 1$ — errors less than this “mixing angle” times the previous order non-zero correction term
(n is in-block, k is out-of block) because diagonalization is ∞ order
(within block).

Variational Method

best possible estimate for lowest few E_n, ψ_n (and properties derivable from these) using finite basis set and exact form of H.
Vast majority of computer time in Chemistry is spent in variational calculations. Goal is numbers. Insight is secondary.

"Ab Initio" vs. "semi-empirical" or "fitting"

[intentionally bad basis set: Hückel, tight binding – qualitative behavior obtained by a fit to a few microscopic–like control parameters]

2. Variational Theorem

If \(\phi \) is approximation to eigenfunction of \(\hat{A} \) belonging to lowest eigenvalue \(a_0 \), then

\[
\alpha \equiv \frac{\langle \phi | \hat{A} | \phi \rangle}{\langle \phi | \phi \rangle} \geq a_0
\]

the variational Theorem

PROOF: eigenbasis (which we do not know – but know it must exist)

\[
\hat{A} | n \rangle = a_n | n \rangle
\]

expand \(\phi \) in eigenbasis of \(\hat{A} \), exploiting completeness

\[
| \phi \rangle = \sum_n | n \rangle \langle n | \phi \rangle
\]

completeness

\[
\langle \phi | \hat{A} | \phi \rangle = \sum_{n,n'} \langle \phi | n \rangle \langle n | \hat{A} | n' \rangle \langle n' | \phi \rangle = \sum_n \langle \phi | n \rangle^2 a_n
\]

eigenbasis

\[
\langle \phi | \phi \rangle = \sum_n \langle \phi | n \rangle \langle n | \phi \rangle = \sum_n \langle \phi | n \rangle^2
\]

subtract \(a_0 \) from both sides

\[
\alpha - a_0 = \frac{\sum_n (a_n - a_0) \langle n | \phi \rangle^2}{\sum_{n'} \langle n' | \phi \rangle^2} \geq 0
\]

again, all terms in both sums are \(\geq 0 \)
because, by definition of \(a_0 \), \(a_n \geq a_0 \) for all \(n \) and all terms in sum are \(\therefore \geq 0 \).

\[\therefore \alpha \geq a_0. \quad \text{QED} \]

It is possible to perform a variational calculation for any \(A \), not limited to \(H \).

3. Stupid Nonlinear Variation

Use the wrong functional form or the wrong variational criterion to get poor results — illustrates that the variational function must have sufficient flexibility and the variational criterion must be as it is specified in the variational theorem, as opposed to a clever shortcut.

The H atom Schröd. Eq. \((\ell = 0) \)

\[
H = -\frac{1}{2} \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r}
\]

and we know

\[
\psi_{1s}(r) = \langle r | 1s \rangle = \pi^{-1/2} e^{-r}
\]

\[
E_{1s} = -1/2 \text{ au}
\]

\[1 \text{ au} = 219475 \text{ cm}^{-1} \]

but try \(\langle r | \phi \rangle = \left[\frac{\xi^3}{2\pi} \right]^{1/2} \left(\xi r e^{-\xi r} \right) \)

normalized for all \(\xi \)

\[\xi \] is a scale factor that controls overall size of \(\phi(r) \)

[actually this is the form of \(\psi_{2p}(r) \) which is necessarily orthogonal to \(\psi_{1s} \)! STUPID!]

\[
\left(\phi(0) = 0 \quad \text{but} \quad \psi_{1s}(0) = \pi^{-1/2} \right)
\]

\[
\varepsilon = \frac{\langle \phi | H | \phi \rangle}{\langle \phi | \phi \rangle} = \frac{4}{3} \left(\frac{\xi^2 - 3\xi}{8} \right)
\]

skipped a lot of algebra

minimize \(\varepsilon \):

\[
\frac{d\varepsilon}{d\xi} = 0 \quad \xi_{\min} = 3/2 \quad \varepsilon_{\min} = -3/8 \text{ au}
\]

FAILURE!

\[
\text{c.f. the true values: } E_{1s} = -1/2 \text{ au, } E_{2s} = -\frac{1}{8} \text{ au}
\]
Try something clever (but lazy):
What is the value of ξ that maximizes $\langle \phi|1s\rangle$?

for the best variational $\xi = 3/2$, $C_{1s} = \langle \phi|\xi = 3/2|1s\rangle = 0.9775$
if we maximize C_{1s} wrt. $\xi : \xi = 5/3 \rightarrow C_{1s} = 0.9826$ better?

but $\varepsilon = -0.370$ results, a poorer bound than $\xi = 3/2 \rightarrow \varepsilon = -0.375$

* need flexibility in ϕ
* can improve on $\frac{d\varepsilon}{d\xi}$ by employing an alternative variational strategy

This was stupid anyway because we would never use the variational method when we already know the answer!

4. Linear Variation \rightarrow Secular Equation

$$\phi = \sum_{n=1}^{N} c_n \chi_n$$

$$\langle \chi_n | H | \chi_{n'} \rangle = H_{nn'}$$
$$\langle \chi_n | \chi_{n'} \rangle = S_{nn'}$$

overlap integrals
(non-orthogonal basis sets are often convenient)

$$\varepsilon = \frac{\langle \phi | H | \phi \rangle}{\langle \phi | \phi \rangle} = \sum_{n,n'} c_n c_{n'} H_{nn'}$$
$$\sum_{m,m'} c_m c_{m'} S_{mm'}$$

rearrange this equation

to find minimum value of ε,
take $\frac{\partial}{\partial c_j}$ for each j and require that

$$\frac{\partial \varepsilon}{\partial c_j} = 0 \text{ for each } j$$

linear variation!

because we are seeking to minimize ε with respect to each c_j.

Find the global minimum of the $\varepsilon(c_1, c_2, \ldots c_N)$ hypersurface.

the only terms that survive $\frac{\partial}{\partial c_j}$ are those that include c_j.

modified 10/9/02 10:21 AM
5.73 Lecture #18

\[\varepsilon \sum_m c_m (S_{mj} + S_{jm}) = \sum_n c_n (H_{jn} + H_{nj}) \]

if \(\{ \chi_n \} \) are real \(S_{ij} = S_{ji}, \ H_{ij} = H_{ji} \)

\[0 = \sum_{n=1}^{N} c_n (H_{jn} - \varepsilon S_{jn}) \]

one such equation for each \(j \) (same set of unknown \(\{ c_n \} \))

N linear homogeneous equations in N unknown \(c_n \)'s
Non trivial \(\{ c_n \} \) only if \(|H - \varepsilon S| = 0 \)
(Not same form as \(|H - E| = 0 \))

The result is N special values of \(\varepsilon \) that satisfy this equation.

CTDL show: all N \(\varepsilon_n \) values are upper bounds to the lowest N \(E_n \)'s
and all \(\{ \phi_n \} \)'s are orthogonal!
(provided that they belong to different values of \(E_n \))

How to solve \(|H - \varepsilon S| = 0 \)

1. Diagonalize \(S \)
 \[U^\dagger S U = \tilde{S} \quad \tilde{S}_{ij} = s_i \delta_{ij} \]
 (orthogonalize \(\{ \chi \} \) basis)

2. Normalize \(\tilde{S} \)
 \[
 \begin{pmatrix}
 \tilde{S}^{-1/2} \tilde{S} \tilde{S}^{-1/2}
 \end{pmatrix}^{\text{3 diagonal matrices}} = \mathbf{1} = \tilde{S} = T^\dagger S T
 \]
 where \(T = US^{-1/2} \)
 \[
 \begin{pmatrix}
 S^{-1/2} \\
 0
 \end{pmatrix} \leq \begin{pmatrix}
 \mathbf{1} \leq S^{-1/2} = \begin{pmatrix}
 s_1^{-1/2} & 0 & 0 \\
 0 & s_2^{-1/2} & 0 \\
 0 & 0 & \ddots
 \end{pmatrix}
 \end{pmatrix}
 \]

This is not an orthogonal transformation, but it does not destroy orthogonality because each function is only being multiplied by a constant.
3. Transform H to orthonormalized basis set

\[H = S^{1/2} \left(U^T H U \right) S^{-1/2} \]

\[U \] diagonalizes \(S \) not \(H \)

new secular equation

\[\| H - \varepsilon S \| = 0 \quad \text{but} \quad S = 1 \]

\[\| H - \varepsilon \mathbf{1} \| = 0 \quad \text{usual} \quad H \quad \text{diagonalized by usual procedure!} \]

5. Combine Linear and Nonlinear Variation

typically done in \textit{ab initio} electronic structure calculations

Basis set: \[\chi_n(\xi_n r) \] linear variation where \(\varepsilon_n \) is a radial scale factor

\[\psi = \sum_n \varepsilon_n \chi_n(\xi_n r) \] nonlinear variation

\[S_{nn'}(\xi_n, \xi_n'), H_{nn'}(\xi_n, \xi_n') \]

0. pick arbitrary set of \(\{ \xi_i \} \)
1. calculate all \(H_{ij}(\xi_i, \xi_j) \) & \(S_{ij}(\xi_i, \xi_j) \)
2. Solve \(| H - \varepsilon S \| = 0 \)

\[a. \quad S \rightarrow \tilde{S} \quad \text{diagonalize } S \quad \text{(orthogonalize)} \]

\[b. \quad \left(\tilde{S} \right)^{-1/2} \quad \text{(normalize)} \]

\[c. \quad H \rightarrow \tilde{H} \]

\[d. \quad \text{diagonalize } \tilde{H} \]

nonlinear variation begins – find global minimum of \(\varepsilon_{\text{lowest}} \)
with respect to each \(\xi_i \)
3. change ξ_1 from $\xi_1^{(0)} \to \xi_1^{(1)} = \xi_1^{(0)} + \delta$

4. recalculate all integrals in H and S involving χ_1

5. Solve $|H - \epsilon S| = 0$ to obtain a new set of $\{\epsilon_i\}$.
 Pick lowest ϵ_i.

6. calculate $\frac{\partial \epsilon_{\text{lowest}}}{\partial \xi_1} = \frac{\epsilon_{\text{old}}^{\text{lowest}} - \epsilon_{\text{new}}^{\text{lowest}}}{\xi_1^{(0)} - \xi_1^{(1)}}$

7. repeat #3 – 6 for each ξ_i (always looking only at lowest ϵ_i)
 This defines a gradient on a multidimensional $\epsilon(\xi_1, \ldots, \xi_N)$ surface. We seek the minimum of this hypersurface. Take a step in direction of steepest descent by an amount determined by $|\partial \epsilon / \partial \xi_{\text{steepest}}|$ (small slope, small step; large slope, large step).

 This completes 1st iteration. All values of $\{\xi_i\}$ are improved.

8. Return to #3, iterate #3-7 until convergence is obtained.

 Nonlinear variations are much slower than linear variations.
 Typically use ENORMOUS LINEAR $\{\chi\}$ basis set.

 Contract this basis set by optimizing nonlinear parameters (exponential scale factors) in a SMALL BASIS SET to match the lowest $\{\phi\}$’s that had initially been expressed in large basis set.
6. Alternative Strategies

* rigorous variational minimization of E_{lowest}: “ab initio”
* constrain variational function to be orthogonal to specific subset of functions

 e.g. orthogonal to ground state – to get variational convergence.

 Applies only to higher members of specific symmetry class

 or orthogonal to core: frozen-core approximation.

 “Pseudopotentials” (use some observed energy levels to

 determine $Z_{\text{eff}}(r)$ of frozen core)

* least squares fitting

 minimize differences between a set of measured energy levels (or other
 properties) and a set of computed variational eigen-energies (or other
 properties computed from variational wavefunctions).

 $$\{\text{observed } E_n\} \leftrightarrow \{\text{parameters in } H_{\text{eff}}\}$$

 molecular constants

 \downarrow

 experimental ψ ‘s in finite

 variational basis set

* semi-empirical model

 replace exact \hat{H} by a grossly simplified form and restrict basis set to a simple
 form too.

 Then adjust parameters in H to match some observed pattern of energy
 splittings. Use parameters to predict unobserved properties or use values of
 fit parameters to build insight.