5.73 Lecture #34

e^2/r_{ij} and Slater Sum Rule Method

LAST TIME:
1. The L^2, S^2 matrix method for setting up $|NLM_sM_m\rangle$ many-electron basis states in terms of linear combination of Slater determinants
 \[L^2 \rightarrow L_+L_- \]
 * $M_L = 0, M_s = 0$ block: $S^2 \rightarrow S_+S_-$

 * diagonalize S^2 (singlets and triplets)
 * diagonalize L^2 in same basis that diagonalizes S^2
 [Recall: to get matrix elements of L^2, first evaluate $L^2 \langle \psi_i \| \psi_j \rangle$ and then left multiply by $\langle \psi_j \| \psi_i \rangle$]
2. coupled representations $|nj\ell\omega\rangle$ and $|NJLSM\rangle$
3. Projection operators: automated projection of L^2 eigenfunctions
 * remove unwanted L'' part
 * preserve normalization of wanted L' part
 * remove overlap factor
 * easy to write computer program that automates the projection method

TODAY:
1. Slater Sum Rule Trick (based on trace invariance): MAIN IDEA OF LECTURE.
2. Evaluate $\sum_{i>j} e^2/r_{ij}$ matrix elements (tedious, but good for you)
 \[1/r_{ij} \text{ is a } 2 - e^- \text{ operator that involves spatial coordinates only, scalar with respect to } J, L, \text{ and } S. \]
 * multipole expansion of charge distribution due to “other electrons”
 * matrix element selection rules for e^2/r_{ij} in both Slater determinantal and many-e^- basis sets
 * Gaunt Coefficients (c^k) (tabulated) and Slater-Condon (F^k, G^k) Coulomb and Exchange parameters. Because of the sum rule, can evaluate most $\langle ab | 1/r_{ij} | ab \rangle$
 and $\langle ab | 1/r_{ij} | ba \rangle$ type matrix elements and never need to evaluate $\langle ab | 1/r_{ij} | cd \rangle$-type matrix elements except when the configuration includes two same-L,S terms.
3. Apply Sum Rule Method
4. Hund’s 1st and 2nd Rules

updated August 28, 2020 @ 11:19 AM
1. **Slater's Sum Rule Method**

It is almost always possible to evaluate e^2/r_{ij} matrix elements without solving for all $|LM_lS_Ms\rangle$ basis states.

* Trace of any Hermitian matrix, expressed in ANY representation, is the sum of the eigenvalues of that matrix (thus invariant to unitary transformation).

* $\sum_{i>j} e^2/r_{ij}$ and every scalar operator with respect to \mathbf{J} (or \mathbf{L}, \mathbf{S}) has non-zero matrix elements diagonal in J and M_J (or L and M_L) and independent of M_J (or M_L, M_S).

[W-E Theorem: \mathbf{J} is the GENERIC ANGULAR MOMENTUM with respect to which e^2/r_{ij} is classified]

Recall from definition of r_{12}, that e^2/r_{ij} is a scalar operator with respect to $\mathbf{J}, \mathbf{L}, \mathbf{S}$ but not with respect to \mathbf{j}_i, or $\mathbf{\ell}_i$.

Interelectronic Repulsion: $\sum_{i>j} e^2/r_{ij}$

- destroys the single-electron orbital approximation $|n\ell\lambda\rangle$ for electronic structure calculations
- "correlation energy," "shielding" \square

![Diagram](image-url)

e^-_1 at (r_1, θ_1, ϕ_1)

e^-_2 at (r_2, θ_2, ϕ_2)

$\mathbf{r}_{12} = \mathbf{r}_2 - \mathbf{r}_1$

\[
\mathbf{r}_{12}^2 = \mathbf{r}_1^2 - 2\mathbf{r}_1 \cdot \mathbf{r}_2 + \mathbf{r}_2^2
\]

\[
\mathbf{r}_{12} = \left[\mathbf{r}_1^2 + \mathbf{r}_2^2 - 2 \mathbf{r}_1 \mathbf{r}_2 \cos(\mathbf{r}_1, \mathbf{r}_2) \right]^{1/2}
\]
5.73 Lecture #34

expand r_{i2}^{-1} as power series in $\left(\frac{r_1}{r_2}\right)$

where $r_<$ is the smaller of $|r_1|, |r_2|$

(integrals evaluated in 2 regions: $r_1 < r_2, r_2 < r_1$) the larger r_i is seeing the multipoles of the smaller r_j

...lengthy algebra...

will evaluate for orbitals occupied by ith e-

\[
\frac{1}{r_{ij}} = \sum_{\ell=0}^{\infty} \sum_{m=-n}^{n} \left(\frac{4\pi}{2n+1}\right) \frac{r_{i}^{\ell}}{r_{i}^{n+1}} Y_{n}^{m}(\theta_{i}, \phi_{i}) Y_{n}^{m}(\theta_{j}, \phi_{j})
\]

An n-pole charge distribution is an n-th rank tensor with 2n+1 components.

No dependence on electron spin, so $1/r_{ij}$ is scalar with respect to S, s_i, s_j.

\[
Y_{n}^{m}(\theta_{i}, \phi_{i}) = \left[\begin{array}{c} \theta_{i} \phi_{i} \\ \ell_{i} = n, m_{\ell_{i}} = m \end{array} \right]
\]
The reason for this rather complicated looking expansion is that it is well suited for integrals over atomic orbitals which are expressed in terms of \(r_i, \theta_i, \phi_i \), which are the coordinates of the \(i \)-th \(e^- \) with respect to the center of symmetry (nucleus) rather than the other \(e^- \). It enables use of atomic orbital basis states. Otherwise the \(1/r_{ij} \) integrals would be nightmares.

\[
Y^m_n(\theta, \phi) = \langle \theta, \phi \mid n = \ell, m = m_i \rangle
\]

Selection rules for matrix elements:

\[
\langle \ell_i m_i \mid Y^m_n \mid \ell_i' m_i' \rangle \langle \ell_j m_j \mid Y^m_n \mid \ell_j' m_j' \rangle
\]

orbits

\[
\begin{cases}
|\Delta \ell_i| \leq n, & \Delta m_{\ell_i} = m, \quad \Delta m_{s_i} = 0 \\
|\Delta \ell_j| \leq n, & \Delta m_{\ell_j} = -m, \quad \Delta m_{s_j} = 0
\end{cases}
\]

triangle rule, \(|\ell_i - \ell_j| \leq n \leq \ell_i + \ell_j \)

(term in multipole expansion)

(non-zero for steps in \(n \) of an even number because of parity)

\[
! \begin{cases}
\Delta L = 0, \Delta S = 0, \Delta M_L = 0, \Delta M_S = 0, \text{ and independent of } M_L, M_S. \text{ Can use any } M_L, M_S \text{ Slater determinant from the box diagram.}
\end{cases}
\]

It is also clear how to evaluate the angular factors of the atomic orbital matrix elements using 3-j coefficients. Special tables of “Gaunt Coefficients” (also Condon and Shortley pages 178-179, Golding, page 41).
general $1/r_{12}$ matrix element (non-zero matrix elements of the $1/r_{12}$ operator follow the $\Delta s-o = 0, 1, \text{and } 2$ spin-orbital selection rule for change in spin-orbitals)

$$\left\langle e_{1}^{+} \left\| \frac{1}{r_{12}} \right\| e_{2}^{-} \right\rangle = \left\langle ab \left\| \frac{1}{r_{12}} \right\| cd \right\rangle - \left\langle ab \left\| \frac{1}{r_{12}} \right\| dc \right\rangle$$

$$\left\langle ab \left\| \frac{1}{r_{12}} \right\| cd \right\rangle = \delta(m_{s_{a}}, m_{s_{b}})\delta(m_{s_{c}}, m_{s_{d}})\delta(m_{\ell_{a}} + m_{\ell_{b}}, m_{\ell_{c}} + m_{\ell_{d}}) \times 1/r_{12} \text{ scalar with respect to } L_{12} = \hat{\ell}_{1} + \hat{\ell}_{2} \text{ (can't change } M_{\ell})$$

$$\sum_{k=0}^{\infty} \frac{c^{k}(\ell_{a} m_{\ell_{a}}, \ell_{c} m_{\ell_{c}}) c^{k}(\ell_{b} m_{\ell_{b}}, \ell_{d} m_{\ell_{d}}) R^{k}(n_{a} \ell_{a} n_{b} \ell_{b} n_{c} \ell_{c} n_{d} \ell_{d})}{e_{1}^{e_{1}} e_{2}^{e_{2}}}$$

tensor rank for product of AOs occupied by e^{-} #1 must be same as for e^{-} #2 for scalar product of two n-th rank tensors

$$c^{k}(\ell m_{\ell}, \ell' m_{\ell'}) \equiv \left[\frac{2\ell' + 1}{2\ell + 1} \right]^{1/2}$$

tabulated

$$A_{000}^{k \ell \ell'} A_{m_{\ell}-m_{\ell'},m'_{\ell}-m_{\ell}}^{k \ell' \ell}$$

Clebsch-Gordan coefficients that result from integral over the product of three spherical harmonics — one from operator, two from orbitals

triangle rule: $|\ell - \ell'| \leq k \leq \ell + \ell'$

$\ell + \ell' + k = \text{ even } (\text{from properties of } A_{000}^{k \ell \ell'}) (\text{including parity})$
For intra-configuration matrix elements, $R^k(abcd)$ has an especially simple form (because the same one or two orbitals appear in both the bra and in the ket).

\[
R^k(ab,ab) \equiv F^k(a,b)
\]

\[
R^k(ab,ba) \equiv G^k(a,b)
\]

(These are reduced matrix elements dependent only on ℓ_a, ℓ_b, ℓ_c, ℓ_d and not on any of the m quantum numbers.) All L-S states that belong to the same configuration are expressed in terms of the same set of F^k, G^k parameters.

\[
\left\langle ab \left\| \frac{e^2}{r_{12}} \right\| ab \right\rangle = J(a,b) + \delta(m_{s_a}, m_{s_b}) K(a,b)
\]

(spins must match or K term will vanish)

(Direct Exchange)

\[
J(a,b) \equiv \left\langle ab \left\| \frac{e^2}{r_{12}} \right\| ab \right\rangle = \sum_{k=0}^{\infty} c^k(\ell_a m_{\ell_a}, \ell_b m_{\ell_b}) c^k(\ell_a m_{\ell_a}, \ell_b m_{\ell_b}) \times F^k(n_a \ell_a, n_b \ell_b)
\]

\[
K(a,b) \equiv \left\langle ab \left\| \frac{e^2}{r_{12}} \right\| ba \right\rangle = \delta(m_{s_a}, m_{s_b}) \sum_{k=0}^{\infty} c^k(\ell_a m_{\ell_a}, \ell_b m_{\ell_b}) c^k(\ell_a m_{\ell_a}, \ell_b m_{\ell_b}) \times G^k(n_a \ell_a, n_b \ell_b)
\]

for special cases, such as nd^2, we have the simplified result that $n_a \ell_a = n_b \ell_b$ and $F^k = G^k$

Now we are ready to set up tables of c^k (or, more conveniently, a^k and b^k) to evaluate the e^2/r_{ij} matrix.
Easy example: nf^2

(recall that L-S terms of f^2 are \(^1I, ^3H, ^1G, ^3F, ^1D, ^3P, ^1S\))

\[\begin{align*}
1I \ 60 & = \| 3\alpha 3\beta \| \\
3H \ 51 & = \| 3\alpha 2\alpha \|
\end{align*} \]

\(^1I\) and \(^3H\) are the only L-S states from the \(f^2\) configuration that are represented by a single Slater determinant — extremes of the \(M_L,M_S\) box diagram.

[You really do not want to calculate off-diagonal matrix elements of a two-electron operator if you can help it!]

Since \(e^2/r_{ij}\) is a scalar operator with respect to \(\hat{L}, \hat{S}, \hat{J}\), matrix elements are \(M_L, M_S, M_J\) independent — so we can use any \(M_L, M_S\) component to evaluate the matrix element — whichever is most convenient!

\[
\left\langle \begin{array}{c} 1I \\ \epsilon_{1}^{-} \end{array} \right| e^2 \left| \begin{array}{c} 1I \\ \epsilon_{1}^{-} \end{array} \right\rangle = \sum_{k=0,2,4,6} \left[c^{k}(33,33)c^{k}(33,33)F^{k}(nf,nf) - \delta(\alpha,\beta) \sum_{k} \left[c^{k}(33,33) \right]^{2} G^{k}(nf,nf) \right]_{F^{k}(nf^2)}
\]

\[
\left\langle \begin{array}{c} 3H \\ \epsilon_{1}^{-} \end{array} \right| e^2 \left| \begin{array}{c} 3H \\ \epsilon_{1}^{-} \end{array} \right\rangle = \sum_{k=0,2,4,6} \left\{ \left[c^{k}(33,33)c^{k}(32,32) \right] F^{k}(nf,nf) - \left[c^{k}(33,32) \right]^{2} G^{k}(nf,nf) \right\}_{F^{k}(nf^2)}
\]

Use table of \(c^k\) in Golding (page 41)/C&S handout (C&S page 179).

Note that \([1/(7361 \cdot 64)]^{1/2}\) is implicit after the first entry for \(f^2\), \(k = 6\).

Here is where everyone makes mistakes!

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c^k(33,33))</td>
<td>1</td>
<td>-1/3</td>
<td>1/11</td>
<td>-[1/7361\cdot64]^{1/2}</td>
</tr>
<tr>
<td>(c^k(32,32))</td>
<td>1</td>
<td>0</td>
<td>-7/33</td>
<td>+[36/7361\cdot64]^{1/2}</td>
</tr>
<tr>
<td>(c^k(33,32))</td>
<td>0</td>
<td>+1/3</td>
<td>-30^{1/2}/33</td>
<td>+[7/7361\cdot64]^{1/2}</td>
</tr>
<tr>
<td>(D_k)</td>
<td>1</td>
<td>225</td>
<td>1089 = 33^2</td>
<td>7361\cdot64</td>
</tr>
</tbody>
</table>

C&S Table: the number listed goes inside the SQRT replacing the numerator in the first row.
5.73 Lecture #34

\(D_k \) is a factor that simplifies the expressions. Each term has the form \(F_k/D_k \). Call this ratio \(F_k \) [notice \(F_k \) vs. \(F_k \)]. Get simpler looking expressions when you replace \(F_k \) by \(D_kF_k \) \((D_k \) appears in denominators of \(c_k \) as \([.../D_k]^{1/2} \)

\[
\begin{align*}
\left\langle \begin{matrix} 1 \\ r_{12} \end{matrix} \right| e^2 \left| \begin{matrix} 1 \\ r_{12} \end{matrix} \right\rangle &= F^0 + \left(\frac{1}{9} \right) F^2 + \left(\frac{1}{121} \right) F^4 + \left(\frac{1}{7361 \times 64} \right) F^6 \\
&= F_0 + 25F_2 + 9F_4 + F_6
\end{align*}
\]

\[
\begin{align*}
\left\langle \begin{matrix} 3 \\ H \\ r_{12} \end{matrix} \right| e^2 \left| \begin{matrix} 3 \\ H \\ r_{12} \end{matrix} \right\rangle &= F^0 + \left[\left(-\frac{1}{3} \right)(0) - \left(\frac{1}{3} \right)^2 \right] F^2 + \left[\left(\frac{1}{11} \right) \left(-\frac{7}{33} \right) \right] F^4 + \left[-\frac{6}{33} \right] F^6 \\
&= F^0 - \frac{1}{9} F^2 - \frac{51}{(33)^2} F^4 - \frac{13}{7361 \times 64} F^6
\end{align*}
\]

\[
\begin{align*}
&= F_0 - 25F_2 - 51F_4 - 13F_6
\end{align*}
\]

A lot of bookkeeping, but it's possible to learn how to use tables of \(c_k, a^k, b^k, \) and \(D_k \), except it is much more work for \(f_3 \) than for \(f_2 \) (but the job is not yet complete for the \(L-S \) terms beyond \(^1I\) and \(^3H\)!

SUM RULE METHOD:

Basic idea is that the sum of all the diagonal elements in the single Slater determinant basis set within an \(M_L, M_S \) box is equal to the sum of the eigenvalues!

Look at the \(M_L = 3, M_S = 1 \) box: \(|3\alpha0\alpha| \) and \(|2\alpha1\alpha| \). This box generates \(|3H31\rangle \) and \(|3F31\rangle \), but the trace is \(E(3H) + E(3F) \) and we already know \(E(3H) \)!

So

\[
\begin{align*}
E(\ ^1I) &= \langle |3\alpha3\beta| \rangle \\
E(\ ^3H) &= \langle |3\alpha2\alpha| \rangle \\
E(\ ^3F) &= \langle |3\alpha0\alpha| \rangle + \langle |2\alpha1\alpha| \rangle - E(\ ^3H) \\
E(\ ^1G) &= \langle |3\alpha1\beta| \rangle + \langle |3\beta1\alpha| \rangle + \langle |2\alpha2\beta| \rangle - E(\ ^1I) - E(\ ^3H) \\
E(\ ^1D) &= \langle |3\alpha - 1\beta| \rangle + \langle |3\beta - 1\alpha| \rangle + \langle |2\alpha0\beta| \rangle + \langle |2\beta0\alpha| \rangle \\
&\quad + \langle |1\alpha1\beta| \rangle - E(\ ^1I) - E(\ ^1G) - E(\ ^3H) - E(\ ^3F) \\
E(\ ^3P) &= \langle |3\alpha - 2\alpha| \rangle + \langle |2\alpha - 1\alpha| \rangle + \langle |1\alpha0\alpha| \rangle - E(\ ^3H) - E(\ ^3F) \\
E(\ ^1S) &= \text{sum of seven } \langle |\ | \rangle \text{ } - \text{sum of six } E(\ ^{2S+1}L)
\end{align*}
\]
This seems exceptionally laborious, but it is much easier than:

* generating each \(|LM_L = L \quad SM_S = S \rangle \) eigen-state as an explicit linear combination of Slater determinants
* then calculating matrix elements of \(e^2/r_{ij} \), because there are many nonzero off-diagonal matrix elements between Slater determinants in the same \(M_L, M_S \) box.

Here is the final result for the energies of all of the \((nf)^{2S+1}L\) terms:

\[E = E^{(0)} + E^{(1)} + E^{(2)} \]

\[E^{(0)} = \text{sum of orbital energies from } h^{(0)} = -\frac{Z^2 R}{n^2} = \varepsilon_{nf} \]

\[E^{(1)} = \frac{1}{r_{ij}} \left(e^2 + H^{(SO)} \right) \]

\[E^{(2)} = \left(\text{intraconfiguraional spin-orbit} \right) + \left(\text{interconfiguraional } e^2/r_{ij} \right) \]

For \(nf^2 \)

\[1^1I \quad 2\varepsilon_{nf} + F_0(nf^2) + 25F_2(nf^2) + 9F_4(nf^2) + F_6(nf^2) \]

\[3^3H \quad 2\varepsilon_{nf} + F_0 - 25F_2 - 51F_4 - 13F_6 \]

\[1^1G \quad 2\varepsilon_{nf} + F_0 - 30F_2 + 97F_4 + 78F_6 \]

\[3^3F \quad 2\varepsilon_{nf} + F_0 - 10F_2 - 33F_4 - 286F_6 \]

\[1^1D \quad 2\varepsilon_{nf} + F_0 + 19F_2 - 99F_4 + 715F_6 \]

\[3^3P \quad 2\varepsilon_{nf} + F_0 + 45F_2 + 33F_4 - 1287F_6 \]

\[1^1S \quad 2\varepsilon_{nf} + F_0 + 60F_2 + 198F_4 + 1716F_6 \]

(there is \textbf{NO} center of Gravity Rule for degeneracy weighted \(L-S \) terms)
Now it is easy to show that all F_k's are > 0 and $F_k \gg F_{k+2}$ etc. (by roughly a factor of 10 per step in k).

From this we get an empirical rule (empirical because we expect that contributions to $E(L, S)$ from F_4 and F_6 can be ignored).

Lowest E of all L–S terms is the one with

* MAXIMUM S
* of those with Maximum S, lowest is the one with MAXIMUM L.

These are Hund’s first and second (of three) rules.

Note also that Hund’s rules make no predictions about the energy order of L-S terms except for the identity of the single, lowest energy L-S term.
Non-Lecture

There are several interesting problems also solved by this e^2/r_{ij} formalism.

1. The energy splittings between and the Slater determinantal characters of two or more L_S terms of the same L and S that belong to the same electronic configuration

 \[\text{e.g. } d^3 \rightarrow \text{two } ^2D \text{ terms} \]

 see pages 47-50 of Golding for 2×2 secular determinant for 2D of d^3

2. matrix elements of e^2/r_{ij} between same–L_S terms that belong to two different configurations

 \[\text{e.g. } nd^2 \quad ^1S,^3P,^1D,^3F,^1G \]

 ndn’d \[\begin{cases} ^1S,^3P,^1D,^3F,^1G \\ ^3S,^1P,^3D,^1F,^3G \end{cases} \]

 no Pauli restrictions

So, for L_S terms that belong to the nd2 configurations, there will be

\[^1S \sim ^1S \]
\[^3P \sim ^3P \]
\[^1D \sim ^1D \]
\[^3F \sim ^3F \]
\[^1G \sim ^1G \]

interconfigurational interaction matrix elements and each of these 5 interaction matrix elements will NOT be of the same magnitude. There will be different Configuration Interaction energy shifts for the various L_S terms in a configuration.

Knowing the single configuration expected pattern of L_S states (energies and other properties) enables detection of local inter-configuration perturbations. Predicted patterns are EVERYTHING to an experimentalist!