Lecture #15: $^2\Pi$ and $^2\Sigma$ Matrices

Last Time:

- Effect of $\hat{\Lambda}^2$, $\hat{\Lambda}_z$, $\hat{\Sigma}$ on $|\Lambda \alpha M\rangle$ basis set
- Case (a) basis set $|n(L) \Lambda \Sigma \rangle |v\rangle |\OmegaJM\rangle$
- L-destroyed, but not Λ: \hat{L}_z, \hat{L}_r, selection rules

$$\hat{H}^\text{ROT} = B(R)\hat{R}^2$$

Diagonal:

$$\left\langle n\Lambda\Sigma \mid \hat{H}^\text{ROT} \mid n\Lambda\Sigma \right\rangle = \delta_{n'n}\delta_{\Lambda'\Lambda}\delta_{\Sigma'\Sigma}\delta_{v'v}\delta_{\OmegaJM\OmegaJM}$$

$$\times B_v[J(J + 1) - \Omega^2 + S(S + 1) - \Sigma^2 + L^2_\perp]$$

$$\Delta\Omega = \Delta\Sigma = \pm 1$$

within $\Lambda-S$ multiplet state (S-uncoupling):

$$\left\langle n\Lambda\Sigma \pm 1 \mid \hat{H}^\text{ROT} \mid n\Lambda\Sigma \right\rangle = -B_v[J(J + 1) - (\Omega \pm 1)\Omega]^{1/2}[S(S + 1) - (\Sigma \pm 1)\Sigma]^{1/2}$$

**** In some of my handouts I call $J + 1/2 = x$. Here, I'll call it y ****

Here $x = J(J + 1)$, $y = J + 1/2$

For example: Start by listing all relevant basis states.

$^2\Pi$

$$\begin{align*}
|n 1 \ 1/2 \ 1/2\rangle & \quad ^2\Pi_{3/2} \\
|n 1 \ 1/2 \ -1/2\rangle & \quad ^2\Pi_{1/2} \\
|n -1 \ 1/2 \ -1/2\rangle & \quad ^2\Pi_{-3/2} \\
|n -1 \ 1/2 \ 1/2\rangle & \quad ^2\Pi_{-1/2}
\end{align*}$$

$\hat{H}^\text{ROT} (^2\Pi) = ^2\Pi_{3/2}$

$$B^x \times ^2\Pi_{1/2}$$

$$^2\Pi_{-1/2} \times ^2\Pi_{-3/2}$$

Two identical blocks for $\Omega > 0$ and $\Omega < 0$ - later we will consider parity basis.

What about $^2\Sigma^+$? Class should do this.
\[\Delta \Omega = \Delta \Lambda = \pm 1 \] between \(\Lambda - S \) multiplet states (L-uncoupling)

\[
\begin{align*}
n' \Lambda + 1 S \Sigma & \left| \begin{array}{c}
\left. \Omega \pm 1 J M \right| H_\text{ROT} \left| n \Lambda S \Sigma \right| v \right| \Omega J M \right) = -B_\nu \gamma [J(J + 1) - (\Omega \pm 1)\Omega]^{1/2} \times \left| n' \Lambda \pm 1 \right| L_z | n \Lambda \right) \\
\beta
\end{align*}
\]

a perturbation parameter to be determined by a fit to the spectrum. ↑

Today: \(\hat{H}^\text{SO}, \hat{H}^\text{SS}, \hat{H}^\text{SR} \) \{ effective operators \} \{ matrix elements \}

Matrix elements of \(^2\Pi, ^2\Sigma \) effective \(H \).

- **Spin-orbit** \(\hat{H}^\text{SO} = \sum_i a(r_i) \ell_i \hat{s}_i \) \(\ell_i \) \(\Lambda \) only → \(\Lambda \hat{S} \) \(\ell \) \(\Lambda \) \(S \) \(\hat{s}_i \) electron (not component)\)

- **Spin-spin** \(\hat{H}^\text{SS} = \sum_i^{\Delta S = 0} 2 \lambda \left[3S_z^2 - S^2 \right] \) another term \(\Delta \Sigma = -\Delta \Lambda = \pm 2 \)

- **Spin-rotation** \(\hat{H}^\text{SR} = \gamma \hat{R} \hat{S} \)

usually \(\lambda, \gamma \) are very small with respect to \(A \) and are dominated by second-order spin-orbit effects (thru van Vleck transformation)—discussed later

\(\hat{H}^\text{SO} \) is very important

\[
\begin{align*}
\hat{H}^\text{SO} &= \sum_i a(r_i) \ell_i \hat{s}_i \\
&= \left(\begin{array}{c}
\text{not} \\
\sum_{i,j}
\end{array} \right) \left(\begin{array}{c}
a \ell_i \cdot \hat{s}_j \\
\end{array} \right)
\end{align*}
\]

\(\ell_i, \hat{s}_i \) are vectors with respect to \(\hat{J} \) → \(\ell_i \hat{s}_i \) is scalar \(\Delta J = \Delta M = \Delta \Omega = 0 \) with respect to \(\hat{J} \).

\(\hat{s}_i \) is vector with respect to \(\hat{S} \) → \(\ell_i \hat{s}_i \) is vector with respect to \(\hat{S} \) → \(\Delta S = 0, \pm 1, \Delta \Sigma = 0, \pm 1 \)

Fine point!

\(\ell_i \hat{s}_i \) does not operate on \(|\Omega J M \rangle \), only on \(|n \Lambda S \Sigma \rangle \); it is therefore NOT INDEPENDENT of \(\Omega \) because, as vector with respect to \(L \) and \(S \), its matrix elements are not independent of \(\Lambda \) and \(\Sigma \).
Selection rules (ASSERTED)

\[\Delta J = 0 \]
\[\Delta \Omega = 0 \]
\[+ \leftrightarrow \ - \ (\text{LAB INVERSION } \hat{I}) \ (\text{parity}) \]
\[g \leftrightarrow u \ (\text{body inversion } \hat{i}) \]
\[\Sigma^+ \leftrightarrow \Sigma^- \ (\sigma_i) \]
\[\Delta S = 0, \pm 1 \]
\[\Delta \Sigma = -\Delta \Lambda = 0, \pm 1 \]

\(\hat{H}^{SO} \) is a one-electron operator, so it has non-zero matrix elements only between electronic configurations differing by a single spin-orbital. (e.g. \(\pi \) orbital = \(1\alpha, 1\beta, -1\alpha, -1\beta \) spin-orbitals)

Special simplification (due to simple form of Wigner-Eckart Theorem). If \(\hat{B} \) is vector with respect to \(\hat{A} \), then \(\Delta \hat{B} = 0 \) matrix elements of a vector operator (\(\hat{B} \)) with respect to angular momentum (\(\hat{A} \)) may be evaluated by replacing \(\hat{B} \) by \(b \hat{A} \) (where \(b \) is a constant, often called a reduced matrix element)!

\(a(r_i) \hat{\ell}_i \) is vector with respect to \(\hat{L} \)
\(\hat{s}_i \) is vector with respect to \(\hat{S} \)

For \(\Delta L = 0, \Delta S = 0 \) matrix elements

\[\sum_i a(r_i) \hat{\ell}_i \cdot \hat{s}_i \rightarrow A \hat{L} \cdot \hat{S} \]

(limited validity operator replacement)

\[\hat{H}^{SO} = A \left[L_z S_z + \frac{1}{2} (L_+ S_- + L_- S_+) \right] \]

E.g., for \(^2\Pi \)

\[\left\langle ^2 \Pi_{\pm 3/2} | \hat{H}^{SO} | ^2 \Pi_{\pm 3/2} \right\rangle = A (\pm 1) \left(\pm \frac{1}{2} \right) = \frac{A}{2} \]
\[\left\langle ^2 \Pi_{\pm 1/2} | \hat{H}^{SO} | ^2 \Pi_{\pm 1/2} \right\rangle = A (\pm 1) \left(\mp \frac{1}{2} \right) = -\frac{A}{2} \]

all \(\Delta \Omega \neq 0 \) matrix elements are = 0.

\[\hat{H}^{SS} \xrightarrow{\Delta S = 0} \frac{2}{3} \lambda \left[3 \hat{S}_z^2 - \hat{S}^2 \right] = \frac{2}{3} \lambda \left[3 \hat{S}_z^2 - S(S + 1) \right] + \text{additional term} \]
Selection rules

\[\Delta S = 0 \]
\[\Delta \Omega = 0 \]
\[\Delta S = 0 \quad \text{[also } \pm 1, \pm 2 \text{ neglected here]} \]
\[\Delta \Sigma = 0 \quad \text{[also } \Delta \Sigma = -\Delta \Lambda = \pm 2 \text{ (} \Lambda \text{-doubling in } ^3\Pi_0 \text{ neglected here)}] \]
\[g \leftrightarrow u \]
\[\Sigma^* \leftrightarrow \Sigma^- \]

\[\hat{H}^{SR} = \gamma \hat{R} \cdot \hat{S} = \gamma (\hat{J} - \hat{L} - \hat{S}) \cdot \hat{S} = \gamma \left[J \cdot S - L \cdot S - S^2 \right] \]

we already know how to deal with all three of these!

Now we are ready to set up full \(^2\Pi, ^3\Sigma^+\) matrix. Start with all matrix elements of \(^2\Pi_{3/2}\) and then \(^2\Pi_{1/2}\) and then \(^3\Sigma_{1/2}\) etc.

\[\langle v, n, \ ^2\Pi_{3/2} \mid \hat{H} = \hat{H}^{\text{elect}} + \hat{H}^{\text{vib}} + \hat{H}^{\text{ROT}} + \hat{H}^{\text{SO}} + \hat{H}^{\text{SS}} + \hat{H}^{\text{SR}} \mid n, \ ^2\Pi_{3/2}, v \rangle = \]

\[T_e (n^2 \Pi) + G(v_\Pi) + A_\Pi (11/2) + \frac{2}{3} \lambda \left(\frac{3}{2} \right) ^2 \left(\frac{1}{2} \right) ^2 - \frac{3}{4} + \gamma_\Pi \left(\frac{3}{2} - 1 \right) ^2 \left(\frac{1}{2} - 3 \right) \]

always \(= 0\) for \(S = 1/2 \) states!

\[+ B_{v_\Pi} \left[J(J + 1) - \frac{9}{4} + \frac{3}{4} + \frac{1}{4} + \frac{L_{\perp}^2}{y^2} \right] = E_{v_\Pi} + \frac{1}{2} A_\Pi - \frac{1}{2} \gamma_\Pi + B_{v_\Pi} \left(J(J + 1) - \frac{7}{4} \right) \]

\[y \equiv J + 1/2, \text{ thus } y \text{ is an integer since } J \text{ is half-integer for } ^3\Pi \text{ and } ^2\Sigma. \]

Get same results for \(\langle \ ^2\Pi_{3/2} \mid \hat{H} \mid \ ^2\Pi_{3/2} \rangle \).

\[\langle \ ^2\Pi_{1/2} \mid \hat{H} \mid \ ^2\Pi_{1/2} \rangle = E_{v_\Pi} - \frac{1}{2} A_\Pi - \frac{1}{2} \gamma_\Pi + B_{v_\Pi} \left[\frac{J(J + 1) + 1}{4} \right] \]
Get same results for $\langle 2 \Pi_{-1/2} | \hat{H} | 2 \Pi_{1/2} \rangle$.

$$\langle 2 \Sigma_{1/2} | \hat{H} | 2 \Sigma_{1/2} \rangle = \langle 2 \Sigma_{-1/2} | \hat{H} | 2 \Sigma_{-1/2} \rangle = E_{\Sigma} - A_{\Sigma} \frac{1}{2} - \frac{1}{2} \gamma_{\Sigma} + B_{\Sigma} \left[J(J+1) - 1/4 + 3/4 - 1/4 \right]$$

\uparrow always for Σ-states

[ASIDE: we have two explicit cases where, by evaluation of matrix elements, we see that $\langle \Lambda \Sigma \Omega | \hat{H} | \Lambda \Sigma \Omega \rangle = \langle -\Lambda - \Sigma - \Omega | \hat{H} | -\Lambda - \Sigma - \Omega \rangle$. But be careful, this is not true for $\langle \Lambda' | \hat{H} | \Lambda \rangle$! Non-automatically-evaluable matrix elements.]

Off-Diagonal Matrix Elements

Always ask what operator do we need to get non-zero matrix element between specified basis states?

$$\langle 2 \Pi_{3/2} | \hat{H} | 2 \Pi_{1/2} \rangle = \langle 2 \Pi_{-3/2} | \hat{H} | 2 \Pi_{-1/2} \rangle = -0A_{\Pi} + \left[\frac{1}{2} \left(x - \frac{3}{4} \right)^{1/2} \right] \gamma_{\Pi} - B_{\Pi} \left[x - \frac{3}{2} \right]^{1/2} \left[\frac{3}{4} - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2}$$

$\Delta \Omega = 0$

$$\langle 2 \Pi_{3/2} | \hat{H} | 2 \Pi_{-1/2} \rangle = 0 \quad \Delta \Omega = 2$$

$$\langle 2 \Pi_{3/2} | \hat{H} | 2 \Pi_{-3/2} \rangle = 0 \quad \Delta \Omega = 3$$

$$\langle 2 \Pi_{3/2} | \hat{H} | 2 \Sigma_{1/2}^{+} \rangle = -\langle \nu_{\Pi} | B(\mathbf{R}) | \nu_{\Sigma} \rangle \left[J(J+1) - \frac{3}{2} \right]^{1/2} \langle n \Pi | L_{+} | n' \Sigma \rangle$$

$$= -\beta_{\nu_{\Pi} \nu_{\Sigma}} \left[y^{2} - 1 \right]^{1/2}$$

$$\langle 2 \Pi_{3/2} | \hat{H} | 2 \Sigma_{-1/2} \rangle = 0 \quad \Delta \Omega = 2$$

all done with $^2\Pi_{3/2}$

$$\langle 2 \Pi_{1/2} | \hat{H} | 2 \Pi_{-3/2} \rangle = 0 \quad \Delta \Omega = 2$$
\[\langle \frac{2}{3} \Pi_{1/2} | \hat{H} | \frac{2}{3} \Sigma_{1/2} \rangle = \langle v_{\Pi} | \frac{2}{3} \Pi_{1/2} \left[\frac{1}{2} A + B(R) \right] L_+ S_- | v_{\Sigma} \rangle \]

\[= \left[S(S+1) - \Sigma_{\Pi} \Sigma_{\Sigma} \right]^{1/2} \left[\langle v_{\Pi} | n_{\Pi} \mid \frac{A}{2} L_+ \mid n'_{\Sigma} \rangle \alpha + B_{v_{\Pi} v_{\Sigma}} \langle n_{\Pi} \mid L_+ \mid n'_{\Sigma} \rangle \beta \right] \]

\[= 1 \left[\alpha_{v_{\Pi} v_{\Sigma}} + \beta_{v_{\Pi} v_{\Sigma}} \right] \]

\[\langle \frac{2}{3} \Pi_{1/2} | \hat{H}^2 | \frac{2}{3} \Sigma_{1/2} \rangle = -B_{v_{\Pi} v_{\Sigma}} \left[J(J+1) - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \langle n_{\Pi} \mid L_+ \mid n'_{\Sigma} \rangle \]

\[= -\beta_{v_{\Pi} v_{\Sigma}} y^2 \]

all done with $^3\Pi_{1/2}$

\[\langle \frac{2}{3} \Sigma_{1/2} | \hat{H}^2 | \frac{2}{3} \Sigma_{1/2} \rangle = -B_{v_{\Sigma}} \left[J(J+1) - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \left[\frac{3}{4} - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \]

\[= -B_{v_{\Sigma}} y^2 \]

all done with $^3\Sigma_{1/2}$.

Are we done? Not quite. Must worry about $^3\Sigma^+ \sim ^3\Pi_{3/2}$ and $^3\Sigma^- \sim ^3\Pi_{1/2}$ matrix elements. What happens to the $\langle \Pi[L_\pm] \Sigma \rangle$ unevaluable factor? Need to consider effects of $\sigma_v(xz)$ reflections and Σ^+, Σ^- symmetry in order to get the correct relative signs of off-diagonal matrix elements.