Lecture #22: Rotation of Polyatomic Molecules I

A diatomic molecule is very limited in how it can rotate and vibrate.

* \(\vec{R} \) is \(\perp \) to internuclear axis
* only one kind of vibration

A polyatomic molecule can have \(\vec{R} \) oriented along any body fixed direction — symmetric and asymmetric tops\(^\dagger\).

A polyatomic molecule can stretch any bond or bend any bond pair — Normal modes of vibration

A lot of very complicated classical mechanics.

TODAY: Derive \(\hat{H}^{\text{ROT}} = \frac{\vec{R}_x^2}{2I_x} + \frac{\vec{R}_y^2}{2I_y} + \frac{\vec{R}_z^2}{2I_z} \) and evaluate matrix elements in \(|KJM\rangle\) basis set, where \(I_x, I_y, \) and \(I_z \) are called principal components (i.e. eigenvalues) of the \(3 \times 3 \) moment of inertia tensor, \(\mathbf{I} \), and are analogous to \(\mu R_{AB}^2 \) in an AB diatomic.

1. Center of mass.
2. rigid body rotation
 \(\hat{T}^{\text{ROT}} \) in terms of \(\vec{\omega} \) (angular velocity), \(m_i, (x_i, y_i, z_i) \)
 (positions of atom \(i \) in center of mass body frame)
 \[
 \frac{1}{2} \vec{\omega} \cdot \mathbf{I} \vec{\omega} = \begin{pmatrix} I_a & 0 & 0 \\ 0 & I_b & 0 \\ 0 & 0 & I_c \end{pmatrix}
 \]
3. \(\hat{H}^{\text{ROT}} \) and matrix elements in \(|KJM\rangle\) basis.
4. Symmetric tops - prolate and oblate energy level formulas.

Consider a rigid N-body system. Each atom has mass \(m \), and body-fixed coordinate \(\vec{q} \) (defined relative to an arbitrary body-fixed origin).

Our first task is to locate the center of mass, because we expect to separate the \(3N \) degrees of freedom into 3 center of mass translations, 3 rotations about the center of mass, and \(3N - 6 \) vibrations.

Center of Mass: 3 Cartesian component equations.

\[
0 = \sum_{i=1}^{3N} m_i (\vec{q}_i - \vec{q}_{CM})
\]

\(^\dagger\) In fact, the definition of body fixed axis system is not even obvious for vibrating molecule.
Example:

\[\text{NH}_3 \] (projected onto xy plane)

Take advantage of symmetry whenever possible!

pick \(C_3 \) (3-fold rotation axis) axis as z axis
locate origin at N atom (a convenient way to start)
locate \(H_1 \) at \(\phi = 0 \) (i.e. in xz plane)

\[\begin{aligned}
\mathbf{q}_{H_1} &= (r, \theta, \phi) = (R, \theta, 0) \Rightarrow (x_1, y_1, z_1) = (R \sin \theta, 0, R \cos \theta) \\
\mathbf{q}_{H_2} &= (R, \theta, \frac{2\pi}{3}) \Rightarrow (x_2, y_2, z_2) = \left(-\frac{1}{2}R \sin \theta, \frac{\sqrt{3}}{2}R \sin \theta, R \cos \theta\right) \\
\mathbf{q}_{H_3} &= (R, \theta, \frac{4\pi}{3}) \Rightarrow (x_3, y_3, z_3) = \left(-\frac{1}{2}R \sin \theta, -\frac{\sqrt{3}}{2}R \sin \theta, R \cos \theta\right) \\
\mathbf{q}_N &= (0, 0, 0)
\end{aligned} \]

Now solve for center of mass.

\(x_{\text{CM}} = y_{\text{CM}} = 0 \) are trivial

\[z_{\text{CM}} = \frac{3m_H R \cos \theta}{3m_H + m_N} \]

So we have coordinates of all atoms relative to new origin now at center of mass, expressed in terms of 2 unknown bond coordinates, \(R \) and \(\theta \).
Next we need to write out H^{ROT} and put it into a convenient form.

$$
\hat{H}^{\text{ROT}} = \hat{T}^{\text{ROT}} + V^{\text{ROT}}
$$

free rotor, thus $V^{\text{ROT}} = 0$

$$
\hat{T}^{\text{ROT}} = \frac{1}{2} \sum_i m_i v_i^2
$$

Want to re-express all v_i's in terms of \vec{q}_i and $\vec{\omega}$ where $\vec{\omega}$ specifies the direction and magnitude of the angular velocity of the rigid body rotations. (All atoms experience the same $\vec{\omega}$.)

\[\vec{\omega}\]

\[
\vec{q}_i = \frac{\vec{q}_i \cdot \vec{\omega}}{||\vec{\omega}||} = \frac{q_i ||\omega|| \cos \theta}{||\omega||}
\]

need velocities for T^{ROT} parallel to $\frac{\vec{\omega}}{||\omega||}$ unit vector

\[v_i = -\vec{q}_i \times \vec{\omega} \quad \text{(right hand rule requires minus sign)}\]

\[|v_i| = |q_i| \ |\omega| \sin \theta_i \quad q_i, \omega \text{ known. Must solve for } \sin \theta_i.\]

\[
\sin \theta_i = \frac{q_i \cdot q_{i\perp}}{q_i} = \frac{q_{i\perp}^2 - \left(\frac{q_i \cdot \omega}{||\omega||}\right)^2}{q_i}
\]

so

\[v_i^2 = q_i^2 \omega^2 \sin^2 \theta_i = \left[q_i^2 \omega^2 - (q_i \cdot \omega)^2\right] \quad \text{(sin}^2 \theta_i = 1 - \cos^2 \theta_i)\]

\[\hat{H}^{\text{ROT}} = \frac{1}{2} \sum_i m_i \left[q_i^2 \omega^2 - (q_i \cdot \omega)^2\right]\]

Go to Cartesian coordinates (always safe for setting up quantum mechanical Hamiltonian operator).
\[
\mathbf{H}^{\text{rot}} = \frac{1}{2} \sum_i m_i \left[(x_i^2 + y_i^2 + z_i^2) \left(\omega_x^2 + \omega_y^2 + \omega_z^2 \right) - \left(x_i \omega_x + y_i \omega_y + z_i \omega_z \right)^2 \right]
\]

a bit of algebra

\[
= \frac{1}{2} \sum_i m_i \left[(x_i^2 + y_i^2) \omega_z^2 + (x_i^2 + z_i^2) \omega_y^2 + (y_i^2 + z_i^2) \omega_x^2 - 2 x_i y_i \omega_x \omega_y - 2 x_i z_i \omega_x \omega_z - 2 y_i z_i \omega_y \omega_z \right]
\]

Reformulate as matrix diagonalization problem!

\[
I_{xx} \equiv \sum_i m_i \left(y_i^2 + z_i^2 \right) \quad \text{etc. perpendicular distance squared from x axis}
\]

Define

\[
I_{xy} = - \sum_i m_i \left(x_i y_i \right) = I_{yx} \quad \text{etc.}
\]

\[
\mathbf{H}^{\text{rot}} = \frac{1}{2} \mathbf{\omega}^T \mathbf{I} \mathbf{\omega}
\]

This is a compact form for messy equation above!

\[
\mathbf{\omega} = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}, \quad \mathbf{I} = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}, \quad \mathbf{\omega}' = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}
\]

"moment of inertia tensor"

\[\mathbf{I}\] is a real, symmetric matrix.

It can be diagonalized (by a coordinate transformation, a rotation about center of mass) to give

\[
\mathbf{T}^T \mathbf{I} \mathbf{T} = \begin{pmatrix} I_a & 0 & 0 \\ 0 & I_b & 0 \\ 0 & 0 & I_c \end{pmatrix}
\]

\[I_a \leq I_b \leq I_c\] by definition and are called the “principal moments of inertia”.

\[
\mathbf{T}^T = \mathbf{1} \quad \mathbf{H}^{\text{rot}} = \frac{1}{2} \mathbf{\omega}^T \mathbf{I} \mathbf{\omega} = \frac{1}{2} (\mathbf{\omega}' \mathbf{T})(\mathbf{T}^T \mathbf{I} \mathbf{T})(\mathbf{T}' \mathbf{\omega})
\]
\[
\begin{pmatrix}
\omega_x \\
\omega_y \\
\omega_z
\end{pmatrix}
\begin{pmatrix}
T' \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
\omega_a \\
\omega_b \\
\omega_c
\end{pmatrix}
\]

We find a special body fixed coordinate system with origin at the center of mass which causes \(I \) to be diagonal.

Usually possible to find principal axes by inspection.

1. One axis is axis of highest order rotational symmetry, called \(z \) by convention.
2. Another axis is \(\perp \) to \(C_n \) and \(\perp \) to a \(\sigma_v \) plane. E.g. if \(\sigma(xz) \) exists, then
 \[
 \sum_i m_i x_i y_i = \sum_i m_i y_i z_i = 0 \text{ because there is always an identical nucleus at } (x, +y, z) \text{ and at } (x, -y, z).
 \]
 (What happens when there is no \(\sigma_z \) plane? e.g. \(S_1 \) acetylene.)
3. 3rd is \(\perp \) to first 2 axes.

So when \(I \) is diagonal

\[
\hat{H}^{\text{ROT}} = \frac{1}{2} \left(I_a \omega_a^2 + I_b \omega_b^2 + I_c \omega_c^2 \right)
\]

the nuclear rotational angular momentum is defined as

\[
\hat{J} = I \omega
\]

should actually use notation of \(R \) or \(N \)

\[
\hat{H}^{\text{ROT}} = \frac{1}{2} \hat{J}^\dagger I^{-1} \hat{J} = \frac{J^2}{2I_a} + \frac{J^2}{2I_b} + \frac{J^2}{2I_c}
\]

like \(\frac{p^2}{2m} \rightarrow \frac{J^2}{2I} \)

(The reciprocal or inverse of a diagonal matrix is trivial.)
We can now define three rotational constants

\[
A = \frac{h}{c} \frac{1}{8\pi^2 I_a} \text{ cm}^{-1} (E/\hbar c)
\]

\[
B = \frac{h}{c} \frac{1}{8\pi^2 I_b} \text{ cm}^{-1}
\]

\[
C = \frac{h}{c} \frac{1}{8\pi^2 I_c} \text{ cm}^{-1}
\]

A \geq B \geq C

(again, by definition)

Note that we will sample “rotational constants” with I\(^{-1}\) averaged over specific vibrational state, not at the equilibrium geometry. Want equilibrium geometry, get strange average. Note that we are eventually going to want to compute derivatives of I\(^{-1}\) \equiv \mu with respect to each of the 3N – 6 normal coordinate displacements.

One obtains A, B, C by picking bond lengths and angles, specifying atomic masses, and diagonalizing I. For each change in masses (isotopic substitution) or iterative change in geometry, I must be rediagonalized.

Example: Principal Moments for NH\(_3\) (refer to table on page 2)

C\(_3\) axis must be one principal axis

\[
\text{so } I_z = R^2 \sin^2 \theta \left[m_{H_1} + \left(\frac{x^2}{4} + \frac{3}{4} \right) m_{H_2} + \left(\frac{1}{4} + \frac{3}{4} \right) m_{H_3} \right]
\]

\[
= 3m_{H_1} R^2 \sin^2 \theta
\]

(the \(\perp\) distance\(^2\) of each atom from axis specified)

existence of reflection plane

\[
\sigma_v (xz) \implies I_y = R^2 \cos^2 \theta \left(\frac{3m_{H_2} m_{H_1}}{M} \right) + R^2 \sin^2 \theta \left(\frac{3m_{H_2}}{2} \right)
\]

principal component \(\perp\) to the xz plane. You show that I\(_x\) = I\(_y\) (for any symmetric top).

[General rule, every molecule with n \(\geq\) 3 C\(_3\) rotation axis has two equal moments of inertia!]

Special case of D\(_{2d}\) \(\rightarrow\) S\(_4\) axis: cyclooctatetraene and allene

allene
\(\hat{H} \text{_{\text{ROT}}} \) for symmetric top.

By convention, \(I_x = I_y, I_z \) is unique (for all sym. tops).

\[
\hat{H} \text{_{\text{ROT}}} = \frac{\hat{J}_x^2}{2I_x} + \frac{\hat{J}_y^2}{2I_y} + \frac{\hat{J}_z^2}{2I_z}
\]

manipulate this into a form convenient for \(|\text{JKM}\rangle \) basis set.

\[
I_x = I_y \quad \hat{J}^2 - \hat{J}_z^2 = \hat{J}_x^2 + \hat{J}_y^2 \quad \text{key step!}
\]

\[
\hat{H} \text{_{\text{ROT}}} = \frac{1}{2I_x} \left[\hat{J}_x^2 + \hat{J}_y^2 \right] + \frac{\hat{J}_z^2}{2I_z} = \frac{1}{2I_x} \left(\hat{J}_x^2 - \hat{J}_z^2 \right) + \frac{\hat{J}_z^2}{2I_z}
\]

\[
\hat{H} \text{_{\text{ROT}}} = \frac{1}{2I_x} \hat{J}_x^2 + \left[\frac{1}{2I_z} - \frac{1}{2I_x} \right] \hat{J}_z^2
\]

remember this!!

Use \(|\text{JKM}\rangle \) symmetric top basis functions which are just like \(|\text{J\Omega M}\rangle \) functions for a diatomic molecule.

So

\[
E \text{_{\text{ROT}}} = \frac{\hbar^2}{2I_x} J(J + 1) + \left[\frac{\hbar^2}{2I_z} - \frac{\hbar^2}{2I_x} \right] K^2
\]

like a diatomic molecule

projection of \(\hat{J} \) onto unique (i.e. symmetry) axis of body (like \(\Omega \))

2 types of symmetric top:

1. \(I_z \equiv I_a \) is unique, \(I_b = I_c > I_a \), prolate top, like a cigar. Coefficient of \(K^2 \) is > 0 because \(A > B \) by definition.

\[
\frac{E \text{_{\text{prolate}}}}{\hbar c} = BJ(J + 1) + (A - B)K^2
\]

2. \(I_z \equiv I_c \) is unique. \(I_a = I_b < I_c \), oblate top, like a frisbee. Coefficient of \(K^2 \) is < 0.

\[
\frac{E \text{_{\text{oblate}}}}{\hbar c} = BJ(J + 1) - (B - C)K^2
\]
J = 0, 1, 2, …
K = 0, ±1, … ±J
denote as (J,K) or J_K

possible levels