Problem 1 (20 points)
Consider a random sample consisting of \(n \) pairs of concentrations \((X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)\) for two solutes \(X \) and \(Y \). Suppose that you wish to fit the following trend function to the data:

\[
y(x) = a_1 x
\]

Assume that the measurements can be described by:

\[
Y_i = a_1 X_i + V_i \quad ; \quad i = 1, \ldots, n
\]

where the \(V_i \) are a set of independent, identically distributed random variables with mean 0 and variance 1.0.

a) Derive an estimator for the parameter \(a_1 \).

b) Show that this estimator is unbiased

Problem 2 (20 points)
Derive a two-sided 90% confidence interval for the mean of a normally distributed random variable \(X \) given the following random sample of \(X \). State any assumptions that you need to make.

\[
[x_1, x_2, \ldots, x_n] = [2, 1, -8, 3, 6, 4, 2, 0, 5, -4]
\]

Problem 3 (20 points)
The results of a water quality screening test are summarized by assigning \(X = 0 \) if the sample fails and \(X = 1 \) if it passes. A series of tests on a set of \(n = 100 \) independent samples drawn from the same population yields 80 passes and 20 fails. Define a test statistic and provide the \(p \) value for a two-sided test of the hypothesis that the fraction of passes in the population is equal to 0.7. Use a sketch to illustrate the test statistic distribution and the \(p \) value.

Problem 4 (20 points)
Write a MATLAB program which uses a Monte Carlo approach to evaluate and plot a sample density function of the maximum annual streamflow observed in a random sample of 20 values. Assume that the annual streamflow has the following exponential probability density:
otherwise \[f_X(x) = \begin{cases} \frac{1}{a} \exp \left(-\frac{x}{a} \right) & ; \quad x \geq 0 \\ f_X(x) = 0 & ; \quad \text{otherwise} \end{cases} \]

where \(a \) is the mean annual streamflow. The probability distribution of the maximum for this case is an example of an \textbf{extreme value distribution}. Suppose that the mean and maximum streamflows obtained from 20 actual annual streamflow measurements are 10 \(\text{m}^3/\text{sec} \) and 50 \(\text{m}^3/\text{sec} \). How would you use your program to estimate the probability of obtaining, in another 20 year sample, a maximum greater than 50 \(\text{m}^3/\text{sec} \) ?

\textbf{Problem 5 (20 points)}

Suppose that you are given the MATLAB function \(\text{ahatcdf}(\text{aval}, a) \) which returns the cumulative distribution function (CDF) value of a test statistic \(\text{ahat} \) for any value \(\text{aval} \) of this statistic. The test statistic is used to test hypotheses about the distributional property \(a \) of a sampled random variable \(X \) (e.g. \(a \) could be the mean of \(X \)). Note that the CDF of \(\text{ahat} \) depends on the parameter \(a \). You are also given a function \(\text{ahat}(x) \) that returns the \(\text{ahat} \) (test statistic) value obtained from a particular random sample of \(X \). The \(n \) measurements in the sample are assembled in an \(n \) vector \(x \).

a) Write a MATLAB function \(\text{pvalue} \) which returns the \(p \) value for a one-sided test of the hypothesis \(H_0: a = 1 \) vs. the alternative \(H_1: a > 1 \). The data vector \(x \) should be passed to \(\text{pvalue} \) through the function argument.

b) Suppose that \(\text{ahat} \) is a positive continuous random variable (e.g. a sum of squares). Sketch a hypothetical probability density function of \(\text{ahat} \) showing the \(H_0 \) acceptance region \((A_0) \) for the hypothesis test in Part a). Indicate on your sketch the relationship between the \(p \) value and the value of \(\text{ahat} \) derived from the sample \(x \).

\textbf{Problem 6 (20 points)}

Suppose that you wish to test the hypothesis \(H_0: \theta = 0 \) vs. the alternative \(H_1: \theta = 1 \). You have derived that the probability distribution function of your test statistic \(\text{given } H_0: \theta = 0 \) is normal with mean 0.0 and variance 1. Also, you have derived that the probability distribution function of your test statistic \(\text{given } H_1: \theta = 1 \) is normal with mean 1.0 and variance 4. What are the Type I and Type II error probabilities if your \(H_0 \) acceptance region is \(A_0 = [-\infty, 0.5] \)? Provide a sketch which identifies each of these probabilities.