3.1 Erdős Rényi graphs

In this homework we will explore numerically some of the properties of Erdős Rényi (ER) graphs. For this we will create ER graphs with \(n = 5000 \) nodes, and increasing probability \(p \).

(a) \([20 \text{ points}]\) Create a number of ER graphs with increasing probability \(p \). Your probabilities should cover the range \(p = [10^{-5}, 10^{-2}] \) with ‘logspace’ (\texttt{np.logspace}). Plot the size of the largest connected component relative to the number of nodes \(n \) (i.e., if the giant component consists of the whole graph its size is 1), as a function of \(p \). For each \(p \) you should create 20 graphs and plot the mean value plus / minus the standard deviation of the giant component size.

(b) \([10 \text{ points}]\) What do you observe for \(p \approx 1/n \)? What happens for \(p \approx \log(n)/n \)? Provide a brief description of these phenomena in terms of what they imply for the graphs generated with these parameters (5 sentences).

(c) \([20 \text{ points}]\) For the same ER graphs you have generated in part (a), plot the number of triangles of the graph as a function of \(c = p(n-1) \). For each \(c \), use the 20 graphs generated in part (a) and only plot the mean of the number of triangles. Can you suggest a formula for the expected number of triangles in an Erdős Rényi graph with mean degree \(c \) for large \(n \)? Justify your answer!