1.022 - Introduction to Network Models

Amir Ajourlou

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Lecture 6
Vertex degrees often stored in the diagonal matrix D, where $D_{ii} = d_i$

\[
D = \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix}
\]

The $|V| \times |V|$ symmetric matrix $L := D - A$ is called graph Laplacian

\[
L_{ij} = \begin{cases}
 d_i, & \text{if } i = j \\
 -1, & \text{if } (i, j) \in E \\
 0, & \text{otherwise}
\end{cases}
\]

\[
L = \begin{pmatrix}
 2 & -1 & 0 & -1 \\
 -1 & 2 & 0 & -1 \\
 0 & 0 & 1 & -1 \\
 -1 & -1 & -1 & 3
\end{pmatrix}
\]

Variants of the Laplacian exist, with slightly different interpretations

\Rightarrow Normalized Laplacian $L_n = D^{-1/2}LD^{-1/2}$

\Rightarrow Random-walk Laplacian $L_{rw} = D^{-1}L$
Laplacian matrix properties

- **Smoothness:** For any vector $x \in \mathbb{R}^{|V|}$ of “vertex values”, one has
 \[x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2 \]
 which can be minimized to enforce smoothness of functions on G.

- **Incidence relation:** $L = BB$ where B has arbitrary orientation.

- **Positive semi-definiteness:** Follows since $x^T L x \geq 0$ for all $x \in \mathbb{R}^{|V|}$.

- **Rank deficiency:** Since $L1 = 0$, L is rank deficient.
Laplacian matrix properties

Spectrum and connectivity: \(\mathbf{L} \mathbf{1} = \mathbf{0} \), so 0 is an eigenvalue

\[0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \]

- The second-smallest eigenvalue \(\lambda_2 \) is called the algebraic connectivity
- If \(\lambda_2 = 0 \), then \(G \) is connected
- If \(G \) has \(k \) connected components then \(0 = \lambda_k < \lambda_{k+1} \)

Matrix Tree Theorem: The number of spanning trees of \(G \) is

\[t(G) = \lambda_2 \times \ldots \times \lambda_n. \]

- Spanning tree: a subgraph that is a tree which includes all the vertices.
Courant Fischer Theorem:

Let M be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ and eigenvectors v_1, \ldots, v_n.

- S_k: the span of v_1, \ldots, v_k, $1 \leq k \leq n$ ($S_0 = \{0\}$).
- S_k^\perp: orthogonal complement of S_k.

Then,

$$
\lambda_k = \min_{x = 0}^{x \in S_k^\perp} \frac{x^T Mx}{x^T x} \quad \text{and} \quad v_k = \arg\min_{x = 0}^{x \in S_k^\perp} \frac{x^T Mx}{x^T x}.
$$
Community detection and spectral clustering

- Nodes in many real-world networks organize into communities
 Ex: families, clubs, political organizations, urban areas, ...

- Supported by the strength of weak ties theory

- Community (a.k.a. group, cluster, module) members are:
 - Well connected among themselves
 - Relatively well separated from the rest
Zachary’s karate club

- Social interactions among members of a karate club in the 70s
 ⇒ Canonical network for community detection methods

- The club split into two during the study (white and red groups)
 ⇒ Offers ground-truth community membership

- Could we have predicted the split only from the network structure?
The political blogosphere for the US 2004 presidential election

Community structure of liberal and conservative blogs is apparent
⇒ Strong evidence of partisan homophily in the network
⇒ Can we detect both parties without looking at the blogs’ content?

Adamic, Lada and Natalie Glance. "The Political Blogosphere and the 2004 U.S. Election: Divided They Blog." March 4, 2005. © Lada Adamic and Natalie Glance. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
School students

- Social network from a town’s middle and high school students

- Two binary divisions are apparent from the structure of the network
 - Racial division marked in red
 - Age division (middle - high) marked in blue

- Can we estimate race and age of a student from the structure?
Co-authorship network of physicists working on networks
⇒ Edges represent the existence of a collaborative publication

Tightly-knit subgroups are evident from the network structure
⇒ Some researchers work at the boundary between two groups?
⇒ Can we recover this information without relying on visual inspection?

Newman, M. E. J., and M. Girvan. "Finding and evaluating community structure in networks." Physical Review E 69 (2004): 026113. © American Political Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Recurring theme in all of the examples provided

⇒ How can we automatically detect communities in a network?

But ... what is a sensible definition of community?

⇒ Multiple definitions lead to multiple community detection methods
Graph partitioning and community detection

- Community detection is a challenging problem
 - No universal definition of community
 - No prior knowledge of community number or sizes
 - Rare ground-truth data for validation

- We begin with a simpler problem ⇒ Graph partitioning
- Divide V into a given number of non-overlapping groups of a given size
- Graph partitioning is still a hard problem
 - Even graph bisection (two groups, equal size) has $\binom{|V|}{|V|/2}$ possibilities
- Exhaustive search intractable beyond small datasets
- Need to rely on tractable relaxations of natural partitioning criteria
Graph partitioning and minimum cuts

- Community members should be well-connected among themselves
 ⇒ Loosely connected with members of other communities

- A cut C is the weight of edges between blocks V_1 and $V_2 = V \setminus V_1$

 \[C = \text{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} A_{ij} \]

- Find cut that achieves the desired sizes in V_1 and V_2 while minimizing C
Graph partitioning and the Laplacian matrix

- Assign to each node \(i \in V \) an identifier \(s_i \in \{-1, 1\} \)
 - Form the vector \(s = [s_1, s_2, \ldots, s_{|V|}] \)
- Notice that \(C(s) = \sum_{ij} A_{ij} \) where \(s_i = -1 \) and \(s_j = +1 \)
- It can be shown that \(C(s) = \frac{1}{4} s^T L s \), where \(L \) is the Laplacian matrix
 - You will show this in your homework

- We have expressed the cut (relevant graph-related quantity)
 - In terms of vectors and matrices (amenable algebraic objects)

- Find vector \(s \in \{-1, 1\}^{|V|} \) such that:
 - \(\sum_i s_i = |V_2| - |V_1| \) (desired group sizes), and
 - Minimizes \(C(s) = \frac{1}{4} s^T L s \)
1.022 Introduction to Network Models
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.