1.033/1.57

Mechanics of Material Systems
(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F3:00-4:30
Part II: Momentum Balance, Stresses and Stress States

4. Stress States / Failure Criteria
Content 1.033/1.57

Part I. Deformation and Strain
 1 Description of Finite Deformation
 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses
 3 Momentum Balance
 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds
 5 Thermoelasticity,
 6 Variational Methods

Part IV. Plasticity and Yield Design
 7 1D-Plasticity – An Energy Approach
 8 Plasticity Models
 9 Limit Analysis and Yield Design
Stress Vector and Stress Components

Stress components on a material surface oriented by unit normal \(\mathbf{n} \)

Stress components on a material surface oriented in the principal stress direction \(\mathbf{n} = \mathbf{u}_I \)

\[
T(\mathbf{n}) = \sigma_I \mathbf{n}
\]

\[
t = \mathbf{u}_{II}
\]
Stress Vector in the Principal Stress Space

(Illustration of Stress Invariants)

\[T(-u_1) \]
\[T(-u_2) \]
\[T(-u_3) \]
\[T(n) = \sigma_m n + \tau_{oct} t \]

\(n \) = Orientation of hydrostatic axis

1.033/1.57 Mechanics of Material Systems
Stress Vector in the Mohr Plane

\[T(n) = \sigma(n)n + \tau(n,t)t \]

\[\Theta \]

\[\sigma(n)n \]

\[\tau(n,t) \]

\[u_I \]

\[u_{II} \]
Mohr Circles and *The* Mohr Circle

The Mohr Circle

\[\sigma_{III} \]

\[\sigma_{II} \]

\[\sigma_I \]
Selected Stress States: Hydrostatic Pressure

\[\sigma = -p 1 \]
Selected Stress States: Uniaxial Tension

\[\sigma = \sigma_I e_z \otimes e_z \]

Material Plane

Mohr Stress Plane

\(n = e_z \)

\(\sigma_I \)

\(\sigma_{II} = \sigma_{III} \)

OT\((e_z) \)
Selected Stress States: Pure Shear

\[\sigma = \tau (e_x \otimes e_y + e_y \otimes e_x) \]

\(t = e_y, \quad n = e_x, \quad \theta = -\pi/4 \)

Material Plane

Mohr Stress Plane

\(-2\theta = \pi/2\)
Selected Stress States: Plane Stress

\[
T(n=e_z) = \sigma \cdot e_z = 0
\]

Material Plane

Mohr Stress Plane

1.033/1.57 Mechanics of Material Systems
Tension Cut-Off

\[\sigma = f'_t \]

Shear

Direct Tension

\(-p \)

\(-\tau_{\text{max}} \)
Tresca Criterion

\[\theta(u_{III}, n) = +\pi/4 \]

\[\theta(u_I, n) = -\pi/4 \]

\[\sigma_0 / 2 \]

\[-\sigma_0 / 2 \]
Tresca Criterion: Application

\[\sigma_{II} = \sigma_{III} = -p \]

1.033/1.57 Mechanics of Material Systems
\[\theta = \varphi/2 - \pi/4 < 0 \]

MOHR-COULOMB
1.033/1.57 Mechanics of Material Systems

Mohr-Coulomb

Direct Tension
Shear
Uniaxial Compression

\[+c \]
\[-c \]
Training Set: Excavation Set

1.033/1.57 Mechanics of Material Systems
Max. Excavation Depth of Tresca Material

\[\sigma_0/2 \]

\[\tau \]

\[\sigma \]

\[-\sigma_0/2 \]

\[-\rho \gamma x \]

\[-\rho \gamma (x-H) \]

\[-\rho \gamma H \]

Zone 1

Zone 2

1.033/1.57 Mechanics of Material Systems
Homework Set #2

Part I: Triaxial Test

Part II: Circular Foundation