1.033/1.57

Mechanics of Material Systems
(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F 3:00-4:30
Part IV: Plasticity and Yield Design

8. Plasticity Models
Part I. Deformation and Strain
 1 Description of Finite Deformation
 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses
 3 Momentum Balance
 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds
 5 Thermoelasticity,
 6 Variational Methods

Part IV. Plasticity and Yield Design
 7 1D-Plasticity – An Energy Approach
 8 Plasticity Models
 9 Limit Analysis and Yield Design

1.033/1.57: Mechanics of Material Systems
1D →

Stress σ, Strain ε
Plastic Strain ε^p
Hardening Variable χ
Hardening Force ζ

$f = |\sigma + \zeta| - k \leq 0$

$\varphi dt = \sigma d\varepsilon - d\Psi \geq 0$

$\varepsilon[L] \quad \sigma$

E

$1[L]$

k

H

ε^p

χ

$\zeta(\chi)$

etc
1D → 3D Extension

Stress σ, Strain ε

Plastic Strain ε^p

Hardening Variable χ

Hardening Force ζ

\[f = |\sigma + \zeta| - k \leq 0 \]
\[\varphi dt = \sigma d\varepsilon - d\Psi \geq 0 \]

etc etc

Stress Tensor σ, Strain ε

Plastic Strain Tensor ε^p

Hardening Variables χ, χ

Hardening Forces ζ, ζ

\[f = |s + \zeta| - k \leq 0 \]
\[\varphi dt = \sigma : d\varepsilon - d\Psi \geq 0 \]

etc etc
Convexity of Elasticity Domain

\[\frac{\partial f}{\partial \sigma} \]

(a)

(b)

1.033/1.57: Mechanics of Material Systems
Example: Crystal Structure of Steel

Impurity = defects in the crystal structure / network

Overcome an Obstacle “when?”

Slippage planes = Direction of permanent deformation “how?”

1.033/1.57: Mechanics of Material Systems
Sliding in a Monocrystal (“Kinematics”)
\[T(n) = \sigma_m n + \tau_{oct} t \]

\[T(-u_1) \]

\[T(-u_2) \]

\[T(-u_3) \]

\(n \) = Orientation of hydrostatic axis

Stress Vector on Deviator Plane
Von-Mises Plasticity: Yield Criterion

Principal Stress Space

Deviator Plane

σ_{I} σ_{II} σ_{III}

D_{E}

1.033/1.57: Mechanics of Material Systems
Von-Mises Plasticity: “Kinematics”

\[\tau = 2 \varepsilon_{nt} \]

Shear Test

During Plastic Loading

After Unloading

1.033/1.57: Mechanics of Material Systems
Drucker-Prager Plasticity: Yield Criterion

\[\sigma_{II}, \sigma_{I}, \sigma_{III} \]

1.033/1.57: Mechanics of Material Systems
Drucker-Prager Plasticity: “Kinematics”

During Plastic Loading

\[\theta/2 = \varepsilon_{nt} \]

After Unloading

\[\theta^p/2 = \varepsilon_{nt} \]

\[\Omega^+ > \Omega^- \]

Plastic Dilatation
Drucker-Prager Plasticity: Thermodynamic Restrictions

Associated Plasticity

Non-Associated Plasticity

Thermodynamically Admissible
Plastic Hardening Models

Isotropic Hardening

\[f(\sigma, \zeta) \leq 0 \]

\[|\sigma| = z |\sigma^0| \]

Kinematical Hardening

\[f(\sigma, \zeta) \leq 0 \]

\[|\sigma - z| = |\sigma^0| \]
Cam-Clay Model: Yield Criterion

\[\sqrt{3J_2}/m \]
Cam-Clay Model: “Kinematics”

\[\sqrt{3J_2/m} \]

\(z = 1.5 \)

\(z = 1 \)

\(z = 0.5 \)

\(\text{tr} d\varepsilon^p < 0 \)

\(\text{tr} d\varepsilon^p = 0 \)

\(\text{tr} d\varepsilon^p > 0 \)

1.033/1.57: Mechanics of Material Systems