Detailed Estimation and Pumpstation Overview

Nathaniel Osgood

3/3/2004
Announcements

- **TP2 Due Date:** March 15
- **PS4 out tonight**
 - Due March 19
 - Team project
- **Recording of recitation**
- **Pietroforte Lecture**
 - Important lecture – will link to PS 4
- **Seminars March 16^{th} & 22^{nd}**
Recall the Estimation Phases

Basic Data
1. Craft Wage Rates and Fringe Benefits
2. Payroll taxes and Insurance
3. Local Sales Use Other Taxes
4. Design and Construction Schedule
5. Insurance Requirements

Estimate Types
After most or all of the detail design work is complete, approximate estimates are supplemented by detailed estimates.

Stage 1: Quantity takeoff
- Measurement of material & Labor quantities
- Quantities usually recapped by trade for control reasons

Stage 2: Direct Cost contribution
- \[\Sigma [\text{Quantity}] \times [\text{Unit Costs}] = \text{Estimated direct cost of construction}\]
Notes on Detailed Estimates

- Have differing ranges of uncertainties
 - Distributions typically asymmetric
- More an art than a science – or bookkeeping
 - Detailed quantitative estimates possible – but ignore important qualitative factors
- Wealth of trade-specific and method-specific detail complexity
- Frequently depends heavily on subcontractor estimates (opaque quotes)
Important General Lesson

- Precision in detailed estimated does not mean accuracy!
- Two types of complexity at issue
 - Detail complexity (myriad components required)
 - System complexity (dynamic interactions, etc.)
- Always consider:
 - What are assumptions behind the estimate?
 - What factors are being ignored?
 - How might these factors change the estimate?
Cost Classification

- Direct Cost
 - Labor Cost
 - Material Cost
 - Equipment Cost
 - ST&S Expenses

- Indirect Cost (“Overhead”)
 - Interest on loans
 - Trailer rental
 - Office costs
 - AC/heat
 - Planning&logistics
 - Supervision
Overhead Costs

- **Project Overhead**
 - Project *specific* Management staff, Utilities, Supplies, Engineering, Tests, Drawings, Rents, Permits, Insurance
 - Can and should be estimated directly
 - Can be quite uncertain (mgmt sub. quality, time, etc.)

- **Firm Overhead**
 - General office Salaries, office rent, utilities, insurance, taxes, shops/storage yards, other expenses
 - Hard to estimate; often use % multiplier

- Sometimes distinction unclear (e.g. lumpy central-office investments)
Project Organization

✓ Estimation
 ✓ Introduction
 ✓ Conceptual Estimation
 ✓ Cost indices
 ✓ Cost-capacity factors
 ✓ Component ratios
 ✓ Parameter costs

■ Detailed Estimation
 ▪ Quantity Takeoff
 ▪ Labor Cost Estimation
 ▪ Probabilistic methods
Fair-Cost Estimates

- Prepared from the actual bid documents provided to the bidders (before award)
- Used by owner’s representative to evaluate changes (after award)
- May use RS Means or other sources
- No lump-sum subcontract quotations
- Somewhat diff. disaggregation than bid
 - May be simplified number of line items
 - May be more detailed in certain breakdowns (related to subcontractor work)
- *Primary basis for measuring job progress, for scheduling and for cost control.*
Contractor’s Bid Estimate

- Low enough to obtain the work, yet high enough to make profit
- Often relies on
 - Historical productivity data for company
 - Intuition on speed of movement
 - Quantity takeoff for most important items
- Sometimes less detailed than fair-cost estimates - subcontractors from 30% to 80% of the project
- Is estimating a streamlined process?
 A look at bids received for a typical project in a competitive area will sometimes show more than 50% difference between the low and the high bidders
Definitive Estimates

- There comes a time when a definitive estimate can be prepared that will forecast the final project cost with little margin for error…
- This error can be minimized through the proper addition of an evaluated contingency
- Four categories for purposes of reviewing definitive estimates:
 - Traditional
 - Design-Build
 - Professional CM
 - Unit-price
Definitive Estimates - Traditional

- Lump-sum - definitive estimate = low bidder’s quotation + evaluated contingency
- Fast track guaranteed maximum price, cost-plus-a-fee
 - Definitive estimate will need
 - Detailed project and specifications
 - Firm material quotations
 - Subcontractor quotes
 - Prices for major equipment
Definitive Estimates – Design-Build

- Lump-sum, guaranteed maximum price, cost-plus-a-fee
- Lump-sum can be misleading to an unknowledgeable owner. *The cost is known but the facility that is going to be delivered is unknown*
- In guaranteed maximum price and cost-plus-a-fee contracts the definite estimates can be obtained earlier if compared to the traditional approach because one entity is performing both design and construction
The definitive estimate can be accurately prepared about the same time as the guaranteed-maximum or cost-plus-a-fee option under traditional approach.

Examples show that it is possible to develop definitive estimates after the detailed design is about 95% complete.
Definitive Estimates – Unit Price

- **Unit-Price Projects:**
 - Usually heavy construction projects like dams, tunnels, highways, and airports - Prices constants while quantities vary within limits inherent in the nature of work.
 - Quantities may overrun or underrun owing to a number of potential causes such as additional foundation, excavation to solid rock, poor ground conditions, etc.
 - Without reliable geological information the final cost may not be known accurately until the end of the project.
Project Organization

✓ Estimation
 ✓ Introduction
 ✓ Conceptual Estimation
 ✓ Cost indices
 ✓ Cost-capacity factors
 ✓ Component ratios
 ✓ Parameter costs

▪ Detailed Estimation
 ▪ Quantity Takeoff
 ▪ Labor Cost Estimation
 ▪ Probabilistic methods
Quantity Takeoff

- Really requires *thinking*!
- Systematic identification of quantities of materials and work required
 - Key features sought
 - Exhaustive
 - Mutually exclusive
- Used to calculate several factors
 - Amount of material (e.g. concrete CY)
 - Equipment utilization
 - Labor
- Breakdown often uses CSI or WBS taxonomies
Quantity Takeoff Subtleties I

- Elements required by construction method
 - E.g. construction joints
- Reuse of materials and equipment influenced by
 - Specification
 - Schedule (itself being estimated, adjusted)
 - Space (can complicate or prevent concurrency – e.g. adequate space for 2 cranes? 2 people?)
- Must estimate both Cost & Time
 - Sometimes requires iteration
 - Hidden dependencies of cost on schedule
Quantity Takeoff Subtleties II

- Division between different parties
 - Easy to think other party taking care of particular elements
 - E.g. think excavation cost is included in unit cost of piping
- Choice of construction approach has big impact
- Estimation of labor costs particularly tricky
 - Prices: In United States, highly detail intensive
 - Productivity: Many qualitative components
- Impact of Type I vs Type II error
Project Organization

✓ Estimation
 ✓ Introduction
 ✓ Conceptual Estimation
 ✓ Cost indices
 ✓ Cost-capacity factors
 ✓ Component ratios
 ✓ Parameter costs
 ✓ Detailed Estimation
 ✓ Quantity Takeoff
 ▪ Labor Cost Estimation
 ▪ Probabilistic methods
Labor Estimation

- Most subtle, tricky
- For easy transferability, should separate into
 - Q: Unit (Quantity)
 - P: $/hour (Labor Price per hour)
 - W: hour/unit (Labor hours per unit -- productivity)
- Total cost $ = Q * P * W
Labor Price Estimation (P)

- Components
 - Wages (varies by area, jurisdiction, seniority, …)
 - Insurance (varies w/contractor record, work type)
 - Social security (FICA; ½ by employer, employee)
 - Unemployment tax (state)
 - Fringe benefits (apprenticeship, vacation, health…)
 - Wage premiums
Wage Premiums

- For shift work
 - Sometimes adjust hours

- Overtime
 - 1.5-3x for overtime
 - Some crafts paid overtime if over 32 hours

- Hazardous/arduous work
 - Work on swinging scaffold
 - Larger crane
 - Underground work
Further Issues

- Complicated, heterogeneous rules, exceptions throughout US complicate estimation
 - Probably more complicated than for other industries
 - Problem particularly acute for union shops
- Frequently combine into crew-based estimate
 - Reason about price of standard crew
 - Helps factor in labor rules
- Quite substantial variation between contractors in how handle
Labor Productivity Estimation (W)

- Difficult but critical
 - High importance of qualitative factors (environment, morale, fatigue, learning, etc)
 - The primary means by which to control labor costs
- Historical data available
 - Department of Labor, professional orgs, state govs..)
Productivity Considerations

- Considerations
 - Location of jobsite (local skill base, jurisdiction rules)
 - Learning curves
 - Work schedule (overtime, shift work)
 - Weather
 - Elaborate work-arounds, costs
 - Environment
 - Location on jobsite, noise, proximity to materials
 - Management style
 - Worksite rules
Productivity Job Factors for Comparable Installations

<table>
<thead>
<tr>
<th>Building Construction</th>
<th>1.0 to 1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonworking supervision</td>
<td>1.0 to 1.15</td>
</tr>
<tr>
<td>Craft skill</td>
<td>1.0 to 1.20</td>
</tr>
<tr>
<td>Job conditions</td>
<td>1.0 to 1.20</td>
</tr>
<tr>
<td>Work conditions</td>
<td>1.0 to 1.20</td>
</tr>
<tr>
<td>Shift work</td>
<td>1.0 to 1.20</td>
</tr>
<tr>
<td>Total building range</td>
<td>1.0 to 2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial Construction</th>
<th>1.25 to 2.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light industrial</td>
<td>1.25 to 2.25</td>
</tr>
<tr>
<td>Heavy industrial</td>
<td>1.50 to 3.00</td>
</tr>
<tr>
<td>Total industrial range</td>
<td>1.25 to 3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear Power Plants</th>
<th>2.25 to 5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Three Mile Island</td>
<td>2.25 to 4.00</td>
</tr>
<tr>
<td>Post-Three Mile Island</td>
<td>3.00 to 5.00</td>
</tr>
<tr>
<td>Total nuclear power plant range</td>
<td>2.25 to 5.00</td>
</tr>
</tbody>
</table>
Learning Curves

Integrating the Learning Curve

Variations with Quantity

Application to Control

The “Unlearning” Curve

Productivity
Effects of Overtime

Project Organization

- Award Methods
 - General points
 - Bidding
 - Negotiation

- Lifecycle Costing

- Estimation
 - Introduction
 - Conceptual Estimation
 - Cost indices
 - Cost-capacity factors
 - Component ratios
 - Parameter costs
 - Detailed Estimation
 - Quantity Takeoff
 - Labor Cost Estimation
 - Probabilistic methods
Successive Estimation

- Top-down approach to rapid estimation
- Identify
 - Expected value and variance
 - Irreducible uncertainty due to external factors
- Overall variance is Σ of variance of components
- Break down highest variance items
 - More detail lowers variance
- Result: Frequently only have to estimate small portions of total project to get good estimate
Range Estimation

- Estimate Low-Mean-High of bids will receive
- Estimate range of uncertainty for entire project based on this
 - Can use to reason about confidence intervals
Quantity Take-off

- Assignment 3: Introduction
- Assignment 3: Example
 - Construction Drawings
 - Construction Methods
Assignment 2: What to measure?

- **Formwork** (Square Feet)
- **Formwork Add-on’s:**
 - Anchor Bolts (qty)
 - Joint Filler (Linear Feet)
 - Chamfer (Linear Feet)
 - PVC waterstop (Linear Feet)
 - Construction Joints (Linear Feet)
- **For the Wet Well Floor**
- **For the Operating Floor**
- **For Internal walls and partitions**
How is it constructed?

1. Install Formwork
2. Install rebar
3. Pour concrete
4. Finish it (small slopes etc.)
5. Wait & Repeat (construction joints)
6. Uninstall formwork
7. Point & Patch, Rub

Think from bottom to top

GRAVITY RULES!
Construction Drawings

Navigation

- Drawing Title
- Cross Section
- Detail
Take-off Template

- Characterize each object you measure (Description)
- Specify which plane you measure
- Specify dimensions of the ENTIRE object
- Try to keep North consistent

Formwork

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Drawings</th>
<th>Sketch</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Qty or d</th>
<th>Units</th>
<th>Quantity</th>
<th>Derive</th>
<th>Signoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Invert Edge Form</td>
<td></td>
</tr>
</tbody>
</table>
Example: Define an object

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Invert Edge Form</td>
</tr>
<tr>
<td>a</td>
<td>Invert Slab (bottom)</td>
</tr>
<tr>
<td>b</td>
<td>Invert Slab (W & E sides)</td>
</tr>
<tr>
<td>c</td>
<td>Invert Slab (N & S sides)</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>
Example: Find relevant drawings
Example: Define Planes & Dimensions

| Sides of Invert Slab | S-1101, S-1105 | 1 | 44.00 | 6.00 | 54.50 | SF | 1,182.0 |
Casting a concrete slab on grade

Sequence:

1. Form and edges
2. Reinforcement and embedment
3. Striking off or straightedge
4. Floating (if smoother surface is needed)
5. Control joints
6. Troweling (if very smooth surface is needed)
7. Curing (under damp conditions)

(You are not responsible for this formwork in the assignment)
Casting a concrete wall

Sequence:

1. Coated form (one side only)
2. Reinforcing
3. Ties and inspection
4. Coated form (2nd side)
5. Placing concrete
6. Curing
7. Stripping of formwork and snapping off ties
8. Point and Patch
9. Rub