1.050 Engineering Mechanics I

Lecture 32
Energy bounds in beam structures (cont’d) - How to solve problems

1.050 – Content overview

I. Dimensional analysis
1. On monsters, mice and mushrooms
2. Similarity relations: Important engineering tools

Lectures 1-3
Sept.

II. Stresses and strength
3. Stresses and equilibrium
4. Strength models (how to design structures, foundations... against mechanical failure)

Lectures 4-15
Sept./Oct.

III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D structure/material?

Lectures 16-19
Oct.

IV. Elasticity
7. Elasticity model – link stresses and deformation
8. Variational methods in elasticity

Lectures 20-32
Oct./Nov.

V. How things fail – and how to avoid it
9. Elastic instabilities
10. Plasticity (permanent deformation)
11. Fracture mechanics

Lectures 33-37
Dec.

Review: 3D isotropic elasticity

\[-e_{\text{com}} (\sigma') \leq \begin{cases}
\max \left(-e_{\text{com}} (\sigma') \right) \\
\min_{\xi^*} e_{\text{pot}} (\xi')
\end{cases} \leq e_{\text{pot}} (\xi') \]

Lower bound

Complementary energy approach

\[e_{\text{com}} (\sigma') = \psi (\sigma') - W^* (\ddot{u})\]

Solution

Potential energy approach

\[e_{\text{pot}} (\xi') = \psi (\xi') - W (\ddot{u})\]
Beam structures (2D)

Complementary free energy

\[\psi^* = \int_{x=0}^{L} \left[\frac{1}{2} \frac{N^2}{ES} + \frac{1}{2} \frac{M_y^2}{EI} \right] dx \]

Free energy

\[\psi = \int_{x=0}^{L} \left[\frac{1}{2} ES \left(\varepsilon_{xx}^0 \right)^2 + \frac{1}{2} EI \left(\theta_y \right)^2 \right] dx \]

Note: For 2D, the only contributions are axial forces & moments and axial strains and curvatures (general 3D case see manuscript page 263 and following)

Clapeyron's formulas

\[\psi = \psi^* - \frac{1}{2}(W^* + W) \]
\[\varepsilon_{\text{pot}} = \frac{1}{2}(W^* - W) \]
\[\varepsilon_{\text{com}} = \frac{1}{2}(W - W^*) \]

Significance: Calculate solution potential/complementary energy ("target") from BCs

Beam structures

External work by prescribed displacements

\[W^* = \sum_{j} \left[\tilde{\varepsilon}_j^d(x_j) \cdot \tilde{R}_j(x_j) + \tilde{\omega}_j^y(x_j) \tilde{M}_{y,j} \right] \]

External work by prescribed force densities/forces/moments

\[W = \int_{x=0}^{L} \tilde{\varepsilon}_j^d(x) dx + \sum_{j} \left[\tilde{\varepsilon}_j^d(x_j) \tilde{F}_j(x_j) + \tilde{\omega}_j^y(x_j) \tilde{M}_{y,j} \right] \]

Beam elasticity

\[-\varepsilon_{\text{com}} (\tilde{F}_j^*, \tilde{M}_{y,j}^*) \leq \max_{N,M_y,S.A.} \left(-\varepsilon_{\text{com}} (\tilde{F}_j^*, \tilde{M}_{y,j}^*) \right) \]
\[\leq \min_{K.A.} \varepsilon_{\text{pot}} (\tilde{\varepsilon}_j^d, \tilde{\omega}_j^y) \]

Lower bound

Complementary energy approach
"Stress approach"
\[\text{Solution} \]
Work with unknown but S.A. moments and forces

Upper bound

Potential energy approach
"Displacement approach"
\[\text{Solution} \]
Work with unknown but K.A. displacements
Step-by-step solution approach

- **Step 1:** Express target solution (Clapeyron’s formulas) – calculate complementary energy AT solution
- **Step 2:** Determine reaction forces and reaction moments
- **Step 3:** Determine force and moment distribution, as a function of reaction forces and reaction moments (need \(M_i \) and \(N \))
- **Step 4:** Express complementary energy as function of reaction forces and reaction moments (integrate)
- **Step 5:** Minimize complementary energy (take partial derivatives w.r.t. all unknown reaction forces and reaction moments and set to zero); result: set of unknown reaction forces and moments that minimize the complementary energy
- **Step 6:** Calculate complementary energy at the minimum (based on resulting forces and moments obtained in step 5)
- **Step 7:** Make comparison with target solution = find solution displacement

Example

Step 1: Target solution
\[\varepsilon_{com} = \frac{1}{2} \psi \delta \]

Step 2: Determine hyperstatic forces and moments (here: \(R' \))

Step 3: Determine force and moment distribution (as a function of hyperstatic force \(R' \)):
\[
M_i(x) = \begin{cases}
\frac{P(1 - 2x)}{2} - R'(1 - \frac{x}{2}) & \text{if } 0 \leq x \leq 1/2 \\
- R'(1 - \frac{x}{2}) & \text{if } 1/2 < x \leq 1
\end{cases}
\]

Note: Only need expression for \(N \) and \(M_i \)

Step 4: Express complementary energy
\[
\varepsilon_{com} = \psi^* - W^* = \int \left(\frac{1}{2} N \frac{d}{dx} + \frac{1}{2} M_i \frac{d^2}{dx^2} \right) dx + \frac{1}{5} P^2
\]

Structure is statically indeterminate to degree 1
Can not be solved by relying on static equilibrium only (too many unknown forces, ‘hyperstatic’).

Goal: Solve problem using complementary energy approach
Example

Step 5: Find min of $\varepsilon_{\text{com}}(R')$

\[
\frac{\partial \varepsilon_{\text{com}}(R')}{\partial R} = 0
\]

\[
\frac{1}{2EI} \left(\frac{2l'}{3} l' P - \frac{5}{24} l' P \right) = 0
\]

\[
R' = \frac{5}{16} P
\]

Step 6: Minimum complementary energy

\[
\varepsilon_{\text{com}}(R' = \frac{5}{16} P) = \frac{7}{1536EI} l'^2 P
\]

Example

Step 7: Compare with target solution

\[
\varepsilon = \frac{1}{2} P S \leq \varepsilon_{\text{com}}(R' = \frac{5}{16} P) = \frac{7}{1536EI} l'^2 P
\]

\[
\delta = \frac{7}{768EI} l'^2 P
\]

\[
\text{represents a minimum of the complementary energy}
\]

Is it a global minimum, that is, the solution?

1. M' is S.A.
2. R' is the only hyperstatic reaction force (in other words, the only source of additional moments)
3. Therefore, the minimum is actually a global minimum, and therefore, it is the solution

Generalization (important)

- For any homogeneous beam problem, the minimization of the complementary energy with respect to all hyperstatic forces and moments

\[
X_i = [R_i, M, k_i]
\]

yields the solution of the linear elastic beam problem:

\[
\frac{\partial}{\partial X_i} (\varepsilon_{\text{com}}(X_i)) = 0
\]

\[
\frac{1}{2} (W - W^*) = \min_{X_i} \varepsilon_{\text{com}}(X_i)
\]