We have derived volume conservation in terms of bulk flow description \(Q = VR = \text{constant} \), but if we need details we need to do a lot of work, e.g. draw flow nets to get details on velocity and then use Bernoulli to get details on pressure. Then we have to integrate \(p \) over a surface to get total pressure force. [and we don't get any information about shear forces!].

We want to get other quantities in terms of their bulk values, like \(Q \), but not the details. To do this we take: \text{Finite Control Volume}.

Let \("M" \) be a fluid property per unit volume of fluid. With finite volume \(V \) we then have a total amount of "\(M \)"

\[
M = \int_V m \, dV
\]

The rate of change of \(M \) for this volume (consisting of the same molecules) is

\[
\frac{DM}{Dt} = \lim_{\Delta t \to 0} \frac{M(t + \Delta t) - M(t)}{\Delta t} = \text{Total or Material Derivative}
\]

where

\[
M_{\ast}(t) = \int_{V(t)} m(t) \, dV
\]

and

\[
M(t + \Delta t) = \int_{V(t + \Delta t)} m(t + \Delta t) \, dV = \int_{V(t)} \left[m(t) + \frac{\partial m}{\partial t} \Delta t \right] \, dV
\]
\(V_0 = V(t_0) \quad M_0 = M(t_0) = \int_{V_0}^{} m_0 \, dV \)

\(V(t_0 + \Delta t) = V_0 - \Delta V_{in} + \Delta V_{out} \)

\(\Delta V_{in} = \int_{R_{in}} (q_1 \Delta t) \, dA = \left(\int_{R_{in}} q_1 \, dA \right) \Delta t \quad \Delta V_{out} = \int_{R_{out}} \left(q_1 \Delta t + \left(\frac{\partial m}{\partial t} \right) \Delta t + \Delta t^2 \right) \, dA \)

\(M(t_0 + \Delta t) = \int_{V_0}^{} m_0 \, dV + \left(\int_{R_{in}} \frac{\partial m}{\partial t} \, dA + \int_{R_{out}} \frac{\partial m}{\partial t} \, dA \right) \Delta t + \Delta t^2 \int_{R_{in}}^{R_{out}} \frac{\partial m}{\partial t} \, dA \)

\(M(t_0 + \Delta t) = \left(\text{"m" in } V_0 \text{ at } t_0 \right) + \Delta t \int_{R_{in}}^{R_{out}} \frac{\partial m}{\partial t} \, dA \)

\(\frac{DM}{Dt} = \int_{V_0}^{} \frac{\partial m}{\partial t} \, dV - \int_{R_{in}}^{} m q_1 \, dA + \int_{R_{out}}^{} m q_1 \, dA = \int_{V_0}^{} \frac{\partial m}{\partial t} \, dV - \int_{R_{in}}^{} m q_1 \, dA + \int_{R_{out}}^{} m q_1 \, dA \)
In Words
Rate of change of \(M \) for a volume following the fluid (some fluid particles within volume at all times) =

Rate of change of \(M \) within volume between fixed in- and outflow areas [the control volume] +
Rate of inflow of \(M \) into control volume -
Rate of outflow of \(M \) from control volume

Try this out for our old friend mass conservation.
Since \(\frac{dm}{dt} \) = mass/volume, and \(M \) as we move with the fluid is constant, we have

\[
\frac{dM}{dt} = 0 = \frac{2}{dV} \int_{V_1} q_d dV - \int_{V_1} q_{in} dA + \int_{V_1} q_{out} dA
\]

\[
M_{in} - M_{out} = \frac{dM}{dt}
\]

"old hat" (Lecture #5)

For volume itself - "\(V \)" = unity. If fluid is incompressible volume is conserved, and

\[
\frac{dV}{dt} = 0 = \frac{d}{dt} \left(\frac{dV}{dA} \right) - \int_{V_1} q_{in} dA + \int_{V_1} q_{out} dA
\]

\[
Q_{in} - Q_{out} = \frac{dV}{dt}
\]

"even older hat" (Lecture #5)
We can compact this expression, known as the **Reynolds Transport Theorem**

by the following trick:

\[\vec{n} = \text{unit outward normal to } S_0 \]

\[S_0 = A_s + A_p \]

At inflow
\[\dot{Q}_l = -\vec{n} \vec{\dot{q}} \]

Along streamline, \(A_s \)
\[\dot{Q}_l = \vec{n} \vec{\dot{q}} = 0 \]

At outflow
\[\dot{Q}_l = \vec{n} \vec{\dot{q}} = \vec{Q}_l @ A_p \]

\[\frac{DM}{Dt} = \frac{\partial}{\partial t} \iint \rho \vec{q} \, dt + \iiint \rho \vec{n} \cdot \vec{q} \, dS \]

Here's where we really need it: **Conservation of (Linear) Momentum**, or **Newton's Law**.

Rate of change of Momentum for a volume consisting of the same particles = Sum of Forces on this volume

Linear Momentum per unit volume = \(\rho \vec{q} \)

Reynolds Transport Theorem

Rate of change of momentum = \[\frac{DM}{Dt} = \frac{\partial}{\partial t} \iint \rho \vec{q} \, dt + \iiint \rho \vec{q} (\vec{n} \cdot \vec{q}) \, dS = \Sigma (\text{Forces on } \vec{q}) \]