Travel Demand Modeling

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210
Transportation Systems Analysis: Demand & Economics

Fall 2008
Review

● Discrete Choice Framework
 – A decision maker \(n \) selects one and only one alternative \(i \) from a choice set \(C_n = \{1, \ldots, J_n\} \)
 – Random Utility Model where

\[
U_{in} = V_{in} (\text{attributes of } i, \text{ characteristics of } n, \beta) + \varepsilon_{in}
\]

● Discrete Choice Models
 – Multinomial Logit
 – Nested Logit
 • Correlated Alternatives
 • Multidimensional Choice

Next… Travel Demand Modeling
Outline

- Introduction
- Approaches
 - Trip
 - Tour
 - Activity
- Emerging Approaches
Long Term Choices

- **Urban Development**
 - Firm location and relocation decisions
 - Firm investment in information technology

- **Mobility and Lifestyle Decisions**
 - Labor force participation
 - Workplace location
 - Housing
 - Automobile ownership
 - Information technology ownership and access
 - Activity program
Activity and Travel Pattern Choices

- Activity sequence and duration
- Priorities for activities
- Tour formation
- Telecommunications options
- Access travel information
 - Traffic conditions
 - Route guidance
 - Parking availability
 - Public transportation schedules
- Reschedule activities
- Revise travel plans
Modeling Framework

- **Long Term**
 - Land Use and Economic Development
 - Household & Individual Behavior
 - Lifestyle and Mobility Decisions
 - Activity and Travel Scheduling
 - Implementation and Rescheduling
- **Short Term**
 - Transportation System Performance

Massachusetts Institute of Technology
The Fundamental Modeling Problem

- Adequately represent a decision process that has an inordinate number of feasible outcomes in many dimensions

- Example - Activity Schedule

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of activities</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sequence</td>
<td>10!</td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>10 per activity</td>
<td>100</td>
</tr>
<tr>
<td>Location</td>
<td>1000 per activity</td>
<td>10,000</td>
</tr>
<tr>
<td>Mode</td>
<td>5 per activity</td>
<td>50</td>
</tr>
<tr>
<td>Route</td>
<td>10 per activity</td>
<td>100</td>
</tr>
<tr>
<td>Total Number of Activity Schedule Alternatives</td>
<td>10^{17}</td>
<td></td>
</tr>
</tbody>
</table>

- Simplify
- Achieve valid results
Simplifying the Problem

- Discrete time intervals
- Individuals defined by socioeconomic variables
- Divide space into zones
- Categories of activities
- Depiction of travel patterns
 → trips, tours, activity schedules
Approaches to Modeling Travel

- Trip-based
- Integrated trip-based
- Tour-based
- Activity schedule
Representing Activity/Travel Behavior

Schedule

- **Time**
 - H: Home
 - W: Work
 - S: Shop
 - D: Dinner out

Tours

Trips
Trip-Based: The 4-Step Model

Trip Purpose
- Home-based work (HBW)
- Home-based shop (HBS)
- Home-based other (HBO)
- Non-home-based (NHB)

Behavioral Steps
1. Trip Generation (Frequency)
2. Trip Distribution (Destination)
3. Modal Split (Mode)
4. Assignment (Route)
The 4-Step Model: Trip Generation

● Trip Production
 • Household Size, Household Structure, Income, Car Ownership, Residential Density, Accessibility

● Trip Attractions
 • Land-use and Employment by Category (e.g. Industrial, Commercial, Services), Accessibility

● Cross Classification, Regression, Growth Factor
The 4-Step Model: Trip Distribution

- Trip matrix

<table>
<thead>
<tr>
<th>Generations</th>
<th>Attraction</th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>∑T_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T_{11}</td>
<td>T_{12}</td>
<td>T_{13}</td>
<td>...</td>
<td>T_{1j}</td>
</tr>
<tr>
<td>2</td>
<td>T_{21}</td>
<td>T_{22}</td>
<td>T_{23}</td>
<td>...</td>
<td>T_{2j}</td>
</tr>
<tr>
<td>3</td>
<td>T_{31}</td>
<td>T_{32}</td>
<td>T_{33}</td>
<td>...</td>
<td>T_{3j}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>T_{i1}</td>
<td>T_{i2}</td>
<td>T_{i3}</td>
<td>...</td>
<td>T_{ij}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>J</td>
<td>T_{11}</td>
<td>T_{12}</td>
<td>T_{13}</td>
<td>...</td>
<td>T_{Jj}</td>
</tr>
</tbody>
</table>

\[\sum_i T_{ij} = D_1 \quad D_2 \quad D_3 \quad ... \quad D_j \quad ... \quad D_J \quad \sum_i \sum_j T_{ij} = T \]
The 4-Step Model: Trip Distribution

● Gravity Model

\[T_{ij} = \alpha_i O_i \beta_j D_j f(C_{ij}), \quad i = 1 \ldots I \text{ and } j = 1 \ldots J \]

\[\sum_j T_{ij} = O_i, \quad i = 1 \ldots I \]

\[\sum_i T_{ij} = D_j, \quad j = 1 \ldots J \]

- Where,
 - \(f(C_{ij}) \) = Function of the generalized cost of travel from \(i \) to \(j \) and
 - \(\alpha_i \) and \(\beta_j \) are balancing factors

Solve iteratively for \(T_{ij}, \alpha_i \) and \(\beta_j \)
The 4-Step Model: Modal Split

- **Logit**

 \[
 P(\text{auto}) = \frac{e^{V_{\text{auto}}}}{e^{V_{\text{auto}}} + e^{V_{\text{transit}}}}
 \]

- **Nested Logit**

 \[
 P(\text{NM}) = \frac{e^{\mu_{\text{NM}}}}{e^{\mu_{\text{NM}}} + e^{\mu_{\text{M}}}}
 \]
The 4-Step Model: Assignment

- Route Choice
 - Deterministic: Shortest Path, Minimum Generalized Cost
 - Stochastic: Discrete Choice (e.g. Logit)
- Equilibrium
 - Supply Side
 - User Equilibrium vs. System Optimal
Limitations of the Trip-Based Method

- Demand for trip making rather than for activities
- Person-trips as the unit of analysis
- Aggregation errors:
 - Spatial aggregation
 - Demographic aggregation
 - Temporal aggregation
- Sequential nature of the four-step process
- Behavior modeled in earlier steps unaffected by choices modeled in later steps (e.g. no induced travel)
- Limited types of policies that can be analyzed
Complexity of Work Commute (Boston)

Simple Commute
(no other activities)
- home ➔ work

Complex Commute
(includes non-work activities)
- home ➔ daycare ➔ work
- home ➔ bank ➔ work

All Adults
- 64% Complex
- 36% Simple

Females with Children
- 77% Complex
- 23% Simple

Males with Children
- 60% Complex
- 40% Simple

Complex Responses to Policies
Example: Peak-Period Toll

Potential Responses to Toll

(a) Change Mode & Pattern
(b) Change Time & Pattern
(c) Work at Home

Modeling Travel at the Level of the Individual

● Classic 4-step
 – Trip Frequency
 – Destination Choice
 – Mode Choice
 – Route Choice

● Beyond 4-step
 – Time of Day
 – Integrated Trips
 – Tours
Integrated Trip-Based Framework (e.g., MTC, STEP)

- Auto ownership
 - Home Based Work trips
- Home Based Other trips
- Non-Home Based trips
 Highlights of Integrated Trip-Based System

● Key features
 – Disaggregate choice models
 – Models are integrated, via conditionality and measures of inclusive value, according to the decision framework

● Key weakness
 – Modeling of trips rather than explicit tours
Tour-Based Framework (e.g. Stockholm)

- Work Tours
 - Business
 - Shopping
 - Personal Business
 - Other

- Other Tours
Highlights of Tour-Based System

● Key features
 – Explicitly chains trips in tours
 – Validated and widely applied

● Key weaknesses
 – Lacks an integrated schedule pattern
 – Doesn’t integrate well the time dimension

● Data requirements
 – Same as for trip-based models
Basics of Activity-Based Travel Theory

- Travel demand is derived from demand for activities
- Tours are interdependent
- People face time and space constraints that limit their activity schedule choice
- Activity and travel scheduling decisions are made in the context of a broader framework
 - Conditioned by outcomes of longer term processes
 - Interacts with the transportation system
 - Influenced by intra-household interactions
 - Occurs dynamically with influence from past and anticipated future events
Activity Schedule System

Activity and Travel

Activity Pattern

Tours
Activity Pattern

- Replaces trip and tour generation steps of trip and tour-based models
- Models number, purpose and sequence of tours
 - Tours are interdependent

Example of Activity Patterns

Portland, OR

Table removed due to copyright restrictions.

Tours

- Primary Tour
 - Primary and secondary destinations
 - Timing
 - Modes

- Secondary Tours
 - Primary and secondary destinations
 - Timing
 - Modes
Model Structure

Activity Pattern
primary activity/tour type,
#/purpose secondary tours

Primary Tours
timing, destination
and mode

Secondary Tours
timing, destination
and mode
Highlights of Activity Schedule System

● Key feature
 – Integrated schedule

● Key weaknesses
 – Larger choice set
 • Unrealistic behaviorally
 • Computationally burdensome
 – Incomplete representation
 • Coarse representation of schedule
 • Coupling constraints
Portland Activity-Based Model
[570 Pattern Alternatives]

Day Activity Pattern

Home Based Tours
- Time of day
- Primary destination
- Primary mode

Work-Based Subtour

Location of Intermediate Stops
Preliminary Application Results

$0.50/mile Peak Period Toll

- **Shift in patterns**

Type of Pattern by primary activity

<table>
<thead>
<tr>
<th>Type of Pattern by primary activity</th>
<th>% before</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>62.2%</td>
<td>-2.0%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>25.0%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Leisure</td>
<td>12.8%</td>
<td>3.3%</td>
</tr>
<tr>
<td>All patterns</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Preliminary Application Results

$0.50/mile Peak Period Toll

- Shift in work patterns

<table>
<thead>
<tr>
<th>Type of Work Pattern</th>
<th>% before</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>At home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 sec tours</td>
<td>1.3%</td>
<td>11.5%</td>
</tr>
<tr>
<td>1+sec tours</td>
<td>4.0%</td>
<td>6.2%</td>
</tr>
<tr>
<td>Simple work tour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 sec tours</td>
<td>30.7%</td>
<td>-1.2%</td>
</tr>
<tr>
<td>1+sec tours</td>
<td>17.0%</td>
<td>-3.6%</td>
</tr>
<tr>
<td>Complex work tour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 sec tours</td>
<td>32.6%</td>
<td>-2.3%</td>
</tr>
<tr>
<td>1+sec tours</td>
<td>14.3%</td>
<td>-4.7%</td>
</tr>
<tr>
<td>Total work patterns</td>
<td>100.0%</td>
<td>-2.0%</td>
</tr>
</tbody>
</table>

Preliminary Application Results

$0.50/mile Peak Period Toll

- Shift in work tour mode and chaining

<table>
<thead>
<tr>
<th>Type of work tour</th>
<th>% before</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive alone simple</td>
<td>36.6%</td>
<td>-20.3%</td>
</tr>
<tr>
<td>Drive alone chained</td>
<td>39.2%</td>
<td>-17.3%</td>
</tr>
<tr>
<td>Other simple</td>
<td>13.6%</td>
<td>47.4%</td>
</tr>
<tr>
<td>Other chained</td>
<td>10.6%</td>
<td>54.9%</td>
</tr>
<tr>
<td>Total work tours</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Preliminary Application Results

0.50/mile Peak Period Toll

- Tour purpose and time-of-day effects

<table>
<thead>
<tr>
<th>Percent change in total number of home-based tours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>A.M. Peak</td>
</tr>
<tr>
<td>P.M. Peak</td>
</tr>
<tr>
<td>Midday</td>
</tr>
<tr>
<td>Outside Peak</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Trends in Transportation Demand Modeling

● **DATA:**
 Massive OD Surveys → Small-Scale Detailed Surveys

● **MODELING METHODS:**
 Aggregate Models → Disaggregate Models
 Static → Dynamic
 Canned Statistical Procedures → Flexible Estimation of Models

● **APPLICATION/FORECASTING:**
 Mainframe → User-friendly GIS, powerful PC Systems
 Aggregate Forecasting → Disaggregate Forecasting (microsimulation)

● **BEHAVIORAL REPRESENTATION:**
 Homogeneous → Heterogeneous (including demographics, attitudes and perceptions)
 Trips → Activity Schedules
Emerging Travel Modeling Approaches

● Activity and Trip-Chaining Models
 – Activity time allocation
 – Life cycle, household structure and role
 – Temporal variation of feasible activities over the day
 – Distribution of travel levels of service during the day

● Increased Travel and Information Choices
 – “No travel” options (tele-commuting, tele-shopping, etc.)
 – Information causes changes in departure time, mode and route choice
 – Choice set formation