Final Lecture

Intelligent Transportation Systems (ITS) and the Impact of Traveler Information
&
Emerging Themes in Transportation Economics and Policy

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210
Transportation Systems Analysis: Demand & Economics
Fall 2008

Outline: ITS

- Introduction to ITS and its applications
- Dynamic traffic management
- The impact of traveler information
- Modeling and simulation for dynamic traffic management
- DynaMIT
 - Travel behavior models
 - Data and calibration
- Evaluating the impact of traveler information
- Appendices: Examples, Case Studies

Useful reference on ITS: http://www.itsoverview.its.dot.gov/
Introduction

- Intelligent Transportation Systems (ITS) combine advances in information systems, communications, sensors, and advanced modeling and algorithms to improve the performance of surface transportation.

Benefits of ITS

- Travel
 - Decreased travel time
 - Improved safety and security
 - Increased reliability
 - Decreased cost
 - Improved trip planning
 - Improved emergency response
Benefits of ITS (cont.)

- Economic
 - Increased productivity
 - On-time delivery
- Environmental
 - Decreased air pollution
 - Fuel savings

ITS Applications

- Advanced Transportation Management Systems (ATMS)
 - Network management, including incident management, traffic light control, electronic toll collection, congestion prediction, and congestion-ameliorating strategies.
- Advanced Traveler Information Systems (ATIS)
 - Information provided to travelers pre-trip and during the trip in the vehicle.
- Advanced Vehicle Control Systems (AVCS)
 - Technologies that enhance driver control and vehicle safety.
ITS Applications (cont.)

- Commercial Vehicle Operations (CVO)
 - Technologies that enhance commercial fleet productivity, including weight-in-motion (WIM), pre-clearance procedures, electronic log books, interstate coordination.

- Advanced Public Transportation Systems (APTS)
 - Passenger information and technologies to enhance system operations, including fare collection, intramodal and intermodal transfers, scheduling, and headway control.

- Advanced Rural Transportation Systems (ARTS)
 - Mostly safety and security technologies for travel in sparsely-settled areas.

ITS Applications (cont.)

- This lecture will focus on dynamic traffic management, which integrates ATMS (network management) and ATIS (traveler information) applications.
Impact of Traveler Information

- Provide information to road users before and during a trip (through in-vehicle technologies)
- Public transport users can also benefit from information provided through:
 - Vehicle location systems
 - Scheduling systems (e.g. online journey planners)
- Freight operators can use Commercial Vehicle Operations (CVO) technologies to more effectively manage their fleets
- The information not only lead to more efficient network flows but can also be used for strategic transportation planning purposes
User Response to ATIS

Example: Impact of Traveler Information

Images removed due to copyright restrictions.

- Critical component: user behavior models
Modeling and Simulation for Dynamic Traffic Management Systems

- Off-line evaluation of:
 - Dynamic performance (stability and robustness)
 - Effectiveness of surveillance, control system designs
 - Future system and network modifications
 - Development of new concepts and algorithms

- Real-time decision support systems
 - Route guidance
 - Adaptive traffic control
 - Incident management

DynaMIT

- DynaMIT is a...
 - simulation-based
 - real-time system
 - predicting traffic
 - providing travel information
Broadcasting Traffic Information

Images removed due to copyright restrictions.

DynaMIT Framework

- Prediction-based guidance
 - Prevents over-reaction
 - Supports compliance
Demand Simulation in DynaMIT

- a: Disaggregation of historical OD flows
- b: Travel behavior update
- c: Aggregation
- d: OD estimation and prediction
- e: Generation of driver population

Traveler Decisions

- Access
 - Pre-Trip Usage
 - Travel Response
 - Travel or Not
 - Destination Choice
 - Mode Choice
 - Departure Time Choice
 - Route Choice
 - En-Route Usage
 - Travel Response
 - Return to Origin
 - Change Destination
 - Change Mode
 - Switch Routes
Travel Behavior Models in DynaMIT

● Route and departure time
 – Multiple driver classes
 • Value of time, access to information
 – Path-Size Logit
 – Path choice set generation
 • Shortest paths
 • Link elimination
 • Random perturbation

Travel Behavior Models in DynaMIT (cont’d)

● Information
 – Instantaneous, predictive
 – Descriptive, prescriptive
 – Link, sub-path, path

● Response to Information
 – Pre-trip
 – En-route

● Media
 – Variable Message Signs (VMS)
 – Television, traffic websites
 – In-vehicle (radio, cell phone, GPS navigation system)
Travel Behavior Models in DynaMIT (cont’d)

- **Prescriptive**: Compliance

 ![Habitual travel pattern diagram]

 - Do not change
 - Change

- **Descriptive**

 Pre-trip
 - Habitual travel pattern
 - Do not change
 - Change
 - Mode
 - Departure time
 - Path
 - Both departure time and path
 - Cancel trip
 - All intervals in DTA horizon
 - All feasible paths
 - Combinations of all intervals in DTA horizon and all feasible paths

 En-route
 - Prior route choice
 - Do not change
 - Change
 - All routes in choice set

Data and Calibration

- **Disaggregate** (surveys, diaries)
 - Detailed individual data
 - Limited
- **Aggregate** (traffic sensors)
 - Easy to collect, widespread coverage
 - Special estimation methods

Source: Balakrishna 2006 (See appendix)
Disaggregate Calibration Example1,2

\begin{itemize}
 \item Pre-trip response to unexpected congestion
 \begin{itemize}
 \item Golden Gate bridge, San Francisco, CA
 \item Home-to-work trips
 \end{itemize}
 \item Conclusions
 \begin{itemize}
 \item Travel time, expected delay, congestion level:
 \begin{itemize}
 \item Impact willingness to change travel patterns
 \end{itemize}
 \item Alternative types of ATIS:
 \begin{itemize}
 \item Trigger different travel responses, compliance rates
 \end{itemize}
 \item Experience-based factors very significant
 \end{itemize}
\end{itemize}

1 Khattak, A., A. Polydoropoulou and M. Ben-Akiva (1996). “Modeling Revealed and Stated Preference Pre-trip Travel Response to ATIS” TRR, No. 1537.

Aggregate Calibration with DynaMIT

\begin{itemize}
 \item Benefits
 \begin{itemize}
 \item Jointly adjusts all model parameters
 \begin{itemize}
 \item Route choice, OD flows, supply
 \end{itemize}
 \item Uses general aggregate traffic data
 \begin{itemize}
 \item e.g. counts, speeds, travel times
 \end{itemize}
 \item Applies to any traffic model
 \item Updates available parameters with latest traffic data
 \end{itemize}
 \item More detail in Appendix
\end{itemize}
Case Study

- Boston
- 182 nodes, 211 links
- AM peak - 7:00 to 9:00

Map of downtown Boston highways removed due to copyright restrictions.

Experimental Design

- Scenario: incident in Ted Williams tunnel
 - Capacity reduction of 65% from 7:10-7:30
- Base case
 - Avg. travel time without incident: 369 sec
 - Avg. travel time with incident (no guidance): 690 sec
- Guidance parameters
 - Information update frequency (roll interval)
 - Guidance penetration rate
 - Demand prediction error
- Guidance computation delay: 2 min
Effect of Update Frequency

30% guided, 20-minute prediction horizon

Effect of Guidance Penetration Rate

20-minute prediction horizon
Effect of Demand Prediction Error

30% guided, 20-minute prediction horizon, 10-minute updates

ITS Summary

- ITS is applied to various surface transportation modes
- Information provided through ITS applications benefit freight operators and passengers
- DynaMIT: consistent, anticipatory route guidance
- Calibration
 - Disaggregate, aggregate data
- Predictive information
 - Eliminates over-reaction
 - Benefits guided and unguided drivers
Outline: Emerging Themes

• Public-Private Partnerships
• Controlling Mobility
• Pricing Policies and the Second-Best
• Integrated Energy & Transportation Modeling
• Other Issues

Public-Private Partnerships (PPPs)

● Increasing use of various kinds of regulation, franchising arrangements, and procurement procedures in transportation infrastructure projects and in the provision of transportation services
● There is a need to incorporate Industrial organization tools into transportation systems analysis to fully understand the strengths and weaknesses of the different institutional arrangements
● The key to good institutional design is the incentive structure:
 – To what degree are the incentives given to the different actors causing them to voluntarily act in ways that promote social goals?
Public-Private Partnerships (cont.)

- In many situations, there is a dissociation between pricing decisions and investment decisions
- This increases the burden on public finances which may sometimes lead to both arbitrary cut-backs in investments and privatization
- The problem may not be the lack of efficiency in the public sector but the failure of the decision-making process which may not necessarily change by transferring ownership

Controlling Mobility

- Individual mobility has increased substantially over the past 50 years, not only in terms of the number of trips, but also in terms of distance traveled
 - Is this good or bad? Do increased mobility and accessibility always indicate economic progress or personal freedom, or do they imply a dysfunction or imbalance, in which people have to travel further to reach certain activities?
- Studies on mobility may give different pictures, depending on the location and timescale considered:
 - Short-term models: route and mode choice
 - Long-term models: include trip generation and distribution effects (which may result in higher congestion levels)
Controlling Mobility (cont.)

- Effective transportation pricing and land use planning may not be sufficient to control mobility
 - Distortions in many other economic activities (e.g. housing subsidies)
 - Externalities (e.g. environmental effects)
- There must be a coordinated and coherent use of all possible instruments to control mobility:
 - Prices, taxes, regulation, etc
 - Broader policies (change in work hours, telecommuting, etc)
 - ITS

The Big Dig: 1994 - 2006

- Recent Boston Globe article on allegedly unintended consequences.

Images removed due to copyright restrictions.
Pricing Policies and the Second-Best

- Marginal cost pricing applied to traffic congestion is not effective due to distortions in other modes and in other parts of the economy. Second-best analysis is essential in using economic models to inform transportation policy
 - Examples: Free road, ‘dirty’ vs. ‘clean’ cars
- Cost coverage usually dominates the motivation in determining pricing policies

Pricing Policies and the Second Best (cont.)

- Other issues in implementing pricing policies:
 - Valuation of time savings and environmental impacts
 - Distributional effects
 - Simplicity of pricing schemes
 - Dynamic pricing schemes
 - Creating the demand for niche products due to user heterogeneity (e.g. segmented pricing)
Integrated Energy & Transport Modeling
iTEAM: General Framework

Other Issues

- Incorporating reliability into demand analysis and pricing schemes
- Importance of safety in transportation analysis
- Urban goods movement and its effect on traffic congestion and economic growth
- The roles of both technology and transportation policies in addressing environmental issues (eg Energy)
The End

- We hope you liked it
- Evaluations

Appendix

Case Study: Aggregate Calibration with DynaMIT
Aggregate Calibration with DynaMIT1,2,3

- **Methodology:**
 \[
 \text{Minimize } \left[z_1(M, M) + z_2(0, 0^a) \right] \\
 \text{subject to :} \\
 M = f(0, G) \rightarrow \text{DTA model} \\
 l \leq 0 \leq u \rightarrow \text{Bounds}
 \]

 M: sensor data, \mathcal{M}: Model output

 θ: Vector of variables (θ^a: a priori values)

 G: Exogenous inputs

Aggregate Calibration with DynaMIT (cont’d)

- **Application**
 - South Park, Los Angeles
 - Real-world sensor data
 - Flows, speeds
 - Route choice parameters:
 - Travel time
 - Freeway bias
 - Route hierarchy
Aggregate Calibration with DynaMIT (cont’d)

- Cumulative 15-minute counts

![Graphs showing cumulative counts over time for different sensor numbers, comparing observed counts with reference and SD (c) approaches.]

Reference: Current state-of-the-art
SD (c): New approach, supply + demand calibrated with counts

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Freeway Counts</th>
<th>Arterial Counts</th>
<th>Freeway Speeds</th>
<th>Arterial Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0.218</td>
<td>0.239</td>
<td>0.181</td>
<td>0.203</td>
</tr>
<tr>
<td>SD (c)</td>
<td>0.090</td>
<td>0.113</td>
<td>0.088</td>
<td>0.093</td>
</tr>
<tr>
<td>SD (cs)</td>
<td>0.098</td>
<td>0.114</td>
<td>0.048</td>
<td>0.058</td>
</tr>
</tbody>
</table>

SD (cs): New approach, supply + demand calibrated with counts and speeds

- Root Mean Square Normalized Error

\[
\text{RMSN} = \sqrt{\frac{\sum_{i=1}^{5}(y_i - \bar{y}_i)^2}{\sum_{i=1}^{5} y_i}}
\]

- Improved fit to speeds
 - Route guidance applications
Appendix

Case Study: DynaMIT and Traveler Information

Closed-Loop Evaluation

- Analysis capabilities
 - Information errors
 - Guidance generation methods
 - Guidance computation delay
 - Surveillance system design and accuracy
 - Data and information channels
Case Study

- Incident on link 2
- Links 1, 3 have lower capacity than links 2, 4
- 3-hour simulation

Impact of guidance penetration
 - Scenario 1: Low demand
 - Scenario 2: High demand

Low-Demand Scenario

Base case (no guidance)

<table>
<thead>
<tr>
<th></th>
<th>Total TT</th>
<th>Mean TT</th>
<th>Std. Dev. of Mean TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Base Case (Incident)</td>
<td>430 veh-hrs</td>
<td>25.8 min</td>
<td>1.65 min</td>
</tr>
<tr>
<td>% Change</td>
<td>809 veh-hrs</td>
<td>48.7 min</td>
<td>16.5 min</td>
</tr>
<tr>
<td>% Change</td>
<td>+88%</td>
<td></td>
<td>+900%</td>
</tr>
</tbody>
</table>

Low-Demand Scenario (cont’d)

High-Demand Scenario

Base case (no guidance)

<table>
<thead>
<tr>
<th></th>
<th>Total TT</th>
<th>Mean TT</th>
<th>Std. Dev. of Mean TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1940 veh-hrs</td>
<td>29.1 min</td>
<td>1.52 min</td>
</tr>
<tr>
<td>Base Case (Incident)</td>
<td>3628 veh-hrs</td>
<td>54.4 min</td>
<td>19.3 min</td>
</tr>
<tr>
<td>% Change</td>
<td>+87%</td>
<td>+1170%</td>
<td></td>
</tr>
</tbody>
</table>
High-Demand Scenario (cont’d)

Appendix

Examples of ITS applications
UPS

- Helps UPS in fleet management.
- Helps UPS manage its supply chain better.
- Improved customer service by on-line tracking of packages.
- Will allow on-line quick cost calculation.
- Electronic Data Interchange (EDI) using
 - Satellite and wireless technology

UPS (cont.)

- Benefits to UPS
 - Estimating the expected delay
 - Placing orders on-line
 - Re-routing of vehicles
 - Tracking and Tracing of packets on-line
- Customer benefits
 - Internet tools for package tracking available at web portals (e.g. Lycos)
 - Number of shipments tracked quadrupled
 - Approximately 360,000 packages tracked in one week
Electronic Clearance

- Used to help border officials handle the increased traffic
- Aids in faster clearing of drivers, trucks and cargo
- Helps detect contraband and illegal immigrants
- Electronic Data Interchange and Integrated Databases used with technologies like
 - Automated Vehicle Identification
 - Weigh-in-motion
 - On-board computers
 - Electronic sensors

Electronic Clearance (cont.)

- Use in Traffic Management
 - Sensors determine traffic flow at the Customs facility
 - AVI determines the time spent at the Customs compound
 - This real time data allows companies to avoid peak traffic and moderate flow of traffic
Electronic Clearance (cont.)

- Immigration and Customs
 - Electronic sensors monitor the seals on shipping bags
 - Commuter traffic clearance is done using the vehicle’s transponder identification number
 - GPS tracking monitors the trucks route
 - On board computers monitors the brake and steering functions and reports to the stations

Vessel Traffic Management at the Panama Canal

![Diagram of Vessel Traffic Management at the Panama Canal]

- GPS Signals
- GPS Receiver
- Other Vessel Data
- To Control Center
- Data Radio
- Laptop Display
- GPS Position
Vessel Traffic Management at the Panama Canal (cont.)

- Location system aboard vessels as navigational aid
- Data interchange among all the vessels and the control center
- Exact location of each vessel known to other vessels and the control center

Benefits (cont.)
- Improved safety and efficiency of the transit process through the canal
- Improved operation in case of poor visibility
- Improved capacity
- Better scheduling of maintenance operations to fit more efficiently with the transit operations
Personalized Transit Operations

- User Identification Cards
- Mobile data terminals
- Radio frequency communication
- Automated scheduling and dispatching
- Improved service
- Improved customer access
- Increased productivity

Personalized Transit Operations (cont.)

- Dynamic Scheduling and Dispatching
 - Addresses user-specific information while registering/scheduling customers
 - Scheduling efficiency:
 - Passenger mix
 - Pick-up and drop-off locations
 - Allows scheduling flexibility
Personalized Transit Operations (cont.)

- Technologies used
 - User Identification Cards
 - Certification of passenger access
 - Accurate charging for service
 - Keeps trip records
 - Mobile Data Terminals and Radio Frequency Communication
 - Provides dispatchers with direct access to drivers
 - Allows drivers to communicate vehicle problems

Personalized Transit Operations (cont.)

- Benefits
 - Improved customer accessibility to service
 - Allows adjusting schedules to care-givers needs
 - Reduces staff involvement in scheduling and dispatching
 - Increased productivity of service
The Atlanta Olympics

- Traveler advisory interactive kiosks used
- Placed at several locations and displayed the following
 - Times of Olympic events
 - Best routes to chosen destinations
 - Traffic and congestion information
 - Available modes of transport
 - Probable travel times