1.204 Lecture 8

Data structures: heaps

Priority Queues or Heaps

- Highest priority element at top
- “Partial sort”
- All enter at bottom, leave at top

Applications:
1. Simulations: event list
2. Search, decision trees
3. Minimum spanning tree
4. Shortest path (label setting)
5. And many others...

Complexity:
1. Insertion, deletion: $O(\lg n)$
Min Heap Modeled as Binary Tree

c
q
d
f
e
v
t

Min Heap Modeled as Binary Tree

c
q
d
f
e
v
t

Min Heap Modeled as Binary Tree

c
q
d
f
e
v
t
Min Heap Modeled as Binary Tree

- Min Heap Modeled as Binary Tree

- Min Heap Modeled as Binary Tree
Heap: constructors

```java
public class Heap { // Max heap: largest element at top
    private Comparable[] data;
    private int size; // Actual number of elements in heap
    private int capacity;
    private static final int DEFAULT_CAPACITY = 30;

    public Heap(int capacity) {
        data = new Comparable[capacity];
        this.capacity = capacity;
    }

    public Heap() {
        this(DEFAULT_CAPACITY);
    }

    public Heap(Comparable[] c) {
        data = c;
        heapify(data);
        capacity = size = data.length;
    }
```

(Max) Heap insertion

Figure by MIT OpenCourseWare.
Heap: insert()

```java
public void insert(Comparable item) {
    if (size == 0) { // Empty heap, first element being added
        size = 1;
        data[0] = item;
    } else {
        if (size == data.length)
            grow();
        int i = size++; // Increase no of elements
        while (i > 0 && data[(i-1)/2].compareTo(item) < 0) {
            data[i] = data[(i-1)/2]; // Move parent item down
            i = (i-1)/2; // Go up one level in heap
        }
        data[i] = item; // Drop item into correct place in heap
    }
} // See download for grow() code
```

(Max) Heap deletion

![Diagram of heap deletion process](image-url)
Heap: delete()

```java
public Comparable delete() throws NoSuchElementException {
    if (size == 0)
        throw new NoSuchElementException();

    Comparable retValue = data[0]; // Top removed and returned
    // Put last element at top (element 0) and bubble it down
    Comparable item = data[0] = data[--size];
    int j = 1; // Look at right and left children of top node

    while (j < size) {
        // Compare left and right child and let j be larger child
        if (((j+1 < size) && (data[j].compareTo(data[j + 1]) < 0))
            j++;
        if (item.compareTo(data[j]) > 0)
            break; // Position for item found
        data[(j-1) / 2] = data[j]; // Else put in parent node
        j = 2*j+1; // Move down to next level of heap
    }

    data[(j-1) / 2] = item; // Drop last element in place
    return retValue;
}
```

(Max) Heapify

Figure by MIT OpenCourseWare.
Heap: heapify()

```java
private static void heapify(Comparable[] c) {
    Comparable item;
    int size = c.length;
    for (int i = size/2 - 1; i >= 0; i--) {
        // Start at mid-tree node
        int j = 2*i + 1;
        // Left child
        item = c[i];
        while (j < size) {
            // While loop same as delete()
            // Compare left and right child and let j be larger child
            if (((j+1 < size) && (c[j].compareTo(c[j + 1]) < 0))
                j++;
            if (item.compareTo(c[j]) > 0)
                break; // Position for item found
            c[(j-1) / 2] = c[j]; // Else put child data in parent node
            j = 2*j+1; // Move down to next level of heap
        }
        c[(j-1) / 2] = item; // Drop last element into correct place
    }
}
```

(Max) Heapsort

```
```

...
Heap: heapsort()

```java
public static Comparable[] heapsort(Comparable[] c) {
    heapify(c);
    Comparable item;
    int size = c.length;
    for (int i = size-1; i > 0; i--) {
        Comparable t = c[i]; // Swap top element with ith element
        c[i] = c[0];
        c[0] = t;
        int j = 1;
        // Left child
        item = c[0];
        while (j < i) {
            // Compare left and right child and let j be larger child
            if (((j+1 < i) && (c[j].compareTo(c[j+1]) < 0))
                j++;
            if (item.compareTo(c[j]) > 0)
                break; // Position for item found
            c[(j-1) / 2] = c[j]; // Else put data in parent node
            j = 2*j+1; // Move down to next level of heap
        }
        c[(j-1) / 2] = item; // Drop element into correct place
    }
    return c;
}
```

Heap: example

```java
public static void main(String[] args) { // Max heap
    System.out.println("Heap");
    Heap h = new Heap(10);
    h.insert("b");
    h.insert("d");
    h.insert("f");
    h.insert("a");
    h.insert("c");
    h.insert("e");
    h.insert("g");
    h.insert("h");
    h.insert("i");
    String top = null;
    while (h.getSize() > 0) {
        top = (String) h.delete();
        System.out.println(" *+ top");
    }
}
```
Heap: example, p.2

```java
System.out.println("\nHeapify");

String[] s = {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"};
Heap h2 = new Heap(s);
while (!h2.isEmpty()) {
    top = (String) h2.delete();
    System.out.println(" + top);
}
System.out.println("\nHeapsort");

String[] s2 = {"z", "b", "x", "d", "y", "f", "w", "h", "v", "j", "u", "l", "t"};
String[] answer2 = (String[]) Heap.heapSort(s2);
for (String ss : answer2)
    System.out.println(" +ss");
System.out.println();
} // Download also has MinHeap class; Heap is max heap
```

Heap performance

- **Heap insert**
 - Maximum number of operations = number of levels in tree = O(lg n), where n is number of nodes
- **Heap delete**
 - Same as insert
- **Heapsort**
 - First execute heapify (analyzed below)
 - Number of operations = number of nodes * adjustments/node, which are O(lg n) deletions
 - Thus heapsort is O(n lg n)
 - Similar to quicksort, but quicksort tends to be twice as fast
Heapify performance

- \(n \): number of nodes in heap
- \(K \): levels in heap

 \(0 \) is bottom, \(K \) is top
- \(K = \text{floor}(\log n) + 1 \)
- \((n+1)/(2^{K+1}) \) nodes in each level

Heapify moves a node at level \(k \) a maximum of \(k \) steps

The total number of steps=

\(\text{(number of nodes at each level)} \ast \text{(maximum moves for that level)} \)

\[
\sum_{k=0}^{\lceil \log n \rceil} \frac{n}{2^{k+1}} = n \sum_{k=0}^{\lceil \log n \rceil} \frac{k}{2^{k+1}} \approx n \sum_{k=0}^{\lceil \log n \rceil} \frac{1}{2^k}
\]

CLRS, page 1061, (A.8)

\[
\sum_{k=0}^{\infty} k x^k = \frac{x}{(1-x)^2} \text{ for } |x| < 1
\]

\[
\sum_{k=0}^{\lceil \log n \rceil} k \left(\frac{1}{2} \right)^k \leq \frac{1/2}{(1-1/2)^2} = 2
\]

Thus

\[
n \sum_{k=0}^{\lceil \log n \rceil} k \left(\frac{1}{2} \right)^k = O(2n) = O(n)
\]
1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.