Greedy/dynamic programming algorithms:
Shortest paths

Shortest paths in networks

- Shortest path algorithm:
 - Builds shortest path tree
 - From a root node
 - To all other nodes in the network.
- All shortest path algorithms are labeling algorithms
 - Labeling is process of finding:
 - Cost from root at each node (its label), and
 - Predecessor node on path from root to node
- Algorithm needs two data structures:
 - Find arcs out of each node
 - Array-based representation of graph itself
 - Keep track of candidate nodes to add to shortest path tree
 - Candidate list (queue) of nodes as they are:
 - Discovered and/or
 - Revisited
Example

((Label, predecessor)

(0, null)

Root → a

(0, null)

Root → a

Example

a

b

c

d

3

2

1

1

3

2

1

1

(0, null)
Example

(Label, predecessor) (Node b discovered)

(0, null) (3, a)

Root

Example

(Label, predecessor)

(0, null) (3, a)

Root
Example

(Label, predecessor)

Example

(Node b revisited)
Example

(Label, predecessor)

Orange (thick) arcs are shortest path tree with distances and predecessors.
Types of shortest path algorithms

- Label setting. If arc is added to shortest path tree, it is permanent.
 - Dijkstra (1959) is standard label setting algorithm.
 - Fastest for dense networks with average out-degree -> 30
 - Requires heap or sorted arcs
- Label correcting. If arc is added to tree, it may be altered later if better path is found.
 - Series of algorithms, each faster, depending on how candidate list is managed. Fastest when out-degree < 30
 - Bellman-Ford (1958). New node discovered always put on back of candidate list and next node taken from front of list. (Queue)
 - D’Esopo-Pape (1974). New node put on front of candidate list if it has been on list before, otherwise on back (‘Sharp labels’)
 - Bertsekas (1992). New node put on front of candidate list if its label smaller than current front node, otherwise on back
 - Hao-Kocur (1992). New node is put on front of list if it has been on list before. Otherwise it is put on back of list if label > front node and on front of list if smaller. (‘Sharp labels’)
- Previous example was label correcting
 - Label setting requires looking at shortest arc at every step

Computational results

CPU times (in milliseconds) on road networks (HP9000-720 workstation, 1992)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Arcs</th>
<th>Visit</th>
<th>Dijkstra</th>
<th>Bellman</th>
<th>D’Esopo</th>
<th>Bertsekas</th>
<th>Hao-Kocur</th>
</tr>
</thead>
<tbody>
<tr>
<td>5199</td>
<td>14642</td>
<td>13</td>
<td>98</td>
<td>42</td>
<td>37</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>28917</td>
<td>64844</td>
<td>96</td>
<td>1192</td>
<td>590</td>
<td>125</td>
<td>144</td>
<td>104</td>
</tr>
<tr>
<td>115812</td>
<td>250808</td>
<td>459</td>
<td>9007</td>
<td>5644</td>
<td>619</td>
<td>789</td>
<td>497</td>
</tr>
<tr>
<td>119995</td>
<td>271562</td>
<td>488</td>
<td>13352</td>
<td>7651</td>
<td>708</td>
<td>1183</td>
<td>596</td>
</tr>
<tr>
<td>187152</td>
<td>410338</td>
<td>779</td>
<td>27483</td>
<td>15067</td>
<td>1184</td>
<td>1713</td>
<td>926</td>
</tr>
</tbody>
</table>

Times are 300x faster today (hardware- Moore’s Law).
Also, slow implementations run 100x slower (lists, sorts, etc.)
Worst case, average performance

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label-correcting</td>
<td>$O(2^n)$ in simple version</td>
<td>$O(a \text{lg } n)$ with heap</td>
</tr>
<tr>
<td></td>
<td>$O(2^n)$ Bellman-Ford is $O(an)$</td>
<td>~$O(a)$</td>
</tr>
<tr>
<td>Label-setting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It takes a real sense of humor to use an $O(2^n)$ algorithm in ‘hard real-time’ applications in telecom, but it works!

Label correctors with an appropriate candidate list data structure in fact make very few corrections and run fast.

Tree (D,P) and list (CL) arrays

<table>
<thead>
<tr>
<th>Array</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Distance (output)</td>
<td>Current best distance from root to node i</td>
</tr>
<tr>
<td>P</td>
<td>Predecessor (output)</td>
<td>Predecessor of node in shortest path (so far) from root to node i</td>
</tr>
<tr>
<td>CL</td>
<td>Candidate list (internal)</td>
<td>List of nodes that are eligible to be added to the growing shortest path tree. CL[i]=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEVER_ON_CL if node has never been on CL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON_CL_BEFORE if node has been on CL before</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j if node i is now on CL and j next</td>
</tr>
<tr>
<td></td>
<td></td>
<td>END_OF_LIST if node is last on CL</td>
</tr>
</tbody>
</table>

6 1-D arrays for input, output, data structures:
Graph input and data structure: Head, To, Dist
Tree output and data structure: D, P
Candidate list to control algorithm: CL
Label correcting algorithm: Hao-Kocur

- Initialize:
 - P: Shortest path tree = \{root\}
 - D: Distance from root to all nodes = “infinity”
 - CL: Candidate list = \{root\}, at end of list

- At each step:
 - A node i is removed from front of CL
 - For each arc ij leaving node i where the distance from the root to node j is shortened by going via node i, add node j to CL:
 - If $CL[j] == ON_CL BEFORE$, add j to front of CL
 - If $CL[j] == NEVER_ON_CL$:
 - If $D[j] < D[\text{front node on CL}]$, add j to front of CL
 - Else add j to end of CL
 - If $CL[j] > 0$, j is now on CL. Do nothing.
 - If $CL[j] == END_OF_LIST$, terminate algorithm

Example

```
<table>
<thead>
<tr>
<th>i</th>
<th>P</th>
<th>D</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>b</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>c</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>d</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
</tbody>
</table>
```
Example

\[(0, a)\]
\[\text{Root} \rightarrow a \quad 3 \quad b \quad 2 \quad c\]
\[1 \quad 1 \quad d\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(P)</th>
<th>(D)</th>
<th>(CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>END</td>
</tr>
<tr>
<td>b</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>c</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>d</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
</tbody>
</table>

Example

\[(0, a)\]
\[\text{Root} \rightarrow a \quad 3 \quad b \quad 2 \quad c\]
\[1 \quad 1 \quad d\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(P)</th>
<th>(D)</th>
<th>(CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>3</td>
<td>END</td>
</tr>
<tr>
<td>c</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>d</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
</tbody>
</table>

first

\[\text{a} \rightarrow \text{end}\]
Example

Node d on rear because $D[d] > D[first] = D[a]$

Example

<table>
<thead>
<tr>
<th>i</th>
<th>P</th>
<th>D</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>EMPTY</td>
<td>MAXCOST</td>
<td>NEVER</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>1</td>
<td>END</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>P</th>
<th>D</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>ON_BEF</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>5</td>
<td>END</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>1</td>
<td>c</td>
</tr>
</tbody>
</table>
Example

(a, d) (3, a) (5, b)

Root → a → 3 → b → 2 → c

(1, a)

<table>
<thead>
<tr>
<th>i</th>
<th>P</th>
<th>D</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>ON_BEF</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>5</td>
<td>END</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>1</td>
<td>b</td>
</tr>
</tbody>
</table>

Example

(a, d) (2, d) (4, b)

Root → a → 3 → b → 2 → c

(1, a)

<table>
<thead>
<tr>
<th>i</th>
<th>P</th>
<th>D</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>ON_BEF</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>4</td>
<td>END</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>1</td>
<td>ON_BEF</td>
</tr>
</tbody>
</table>
public class Graph { // Same as before, except add P, D data members
 private int to[]; // Distance from root to node.
 private int dist[]; // Distance from root to node.
 private int H[]; // Distance from root to node.
 private int nodes; // Distance from root to node.
 private int arcs; // Distance from root to node.
 private int[] D; // Distance from root to node.
 private int[] P; // Predecessor node on path from root

 // Constructor, readData() methods same as before
public void shortHK(int root) {
 final int MAX_COST = Integer.MAX_VALUE / 2;
 final int EMPTY = Short.MIN_VALUE;
 final int NEVER_ON_CL = -1;
 final int ON_CL_BEFORE = -2;
 final int END_OF_CL = Integer.MAX_VALUE;
 D = new int[nodes];
 P = new int[nodes];
 int[] CL = new int[nodes];
 // Initialize
 for (int i = 0; i < nodes; i++) {
 D[i] = MAX_COST;
 P[i] = EMPTY;
 CL[i] = NEVER_ON_CL;
 }
 D[root] = 0;
 CL[root] = END_OF_CL;
 int lastOnList = root;
 int firstNode = root;
 // Continued on next page
}

Code, p.3

do {
 int Dfirst = D[firstNode];
 for (int link = head[firstNode]; link < head[firstNode + 1]; link++) {
 int outNode = to[link]; // Loop thru arcs out of node
 int DoutNode = Dfirst + dist[link];
 if (DoutNode < D[outNode]) { // Do something only if impv't
 P[outNode] = firstNode;
 D[outNode] = DoutNode;
 int CLoutNode = CL[outNode];
 if (CLoutNode == NEVER_ON_CL || CLoutNode == ON_CL_BEFORE) {
 CL[firstNode] = CL[firstNode];
 if (CLfirstNode != END_OF_CL && // Front of CL
 (CLoutNode == ON_CL_BEFORE || DoutNode < D[CLfirstNode])){
 CL[outNode] = CLfirstNode;
 CL[firstNode] = outNode;
 } else { // Back of CL
 CL[lastOnList] = outNode;
 lastOnList = outNode;
 CL[outNode] = END_OF_CL;
 }
 } // End for loop
 int nextCL = CL[firstNode]; // Go to next node
 CL[firstNode] = ON_CL_BEFORE;
 firstNode = nextCL;
 }
 } while (firstNode < END_OF_CL); // End do loop
}
Code, p.4

```java
public void print() {
    System.out.println("i \t P \t D");
    for (int i=0; i < nodes; i++) {
        if (P[i] == Short.MIN_VALUE)
            System.out.println(i + "\t - \t D[i]";
        else
            System.out.println(i + "\t " + P[i] + "\t " + D[i]);
    }
}
```

```java
public static void main(String[] args) {
    Graph network= new Graph("src/dataStructures/graph.txt");
    System.out.println("\nDEP shortest path, root 0");
    network.shortDEP(0);
    network.print();
    System.out.println("\nHK shortest path, root 0");
    network.shortHK(0);
    network.print();
    System.out.println("\nDijkstra shortest path, root 0");
    network.shortDijkstra(0);
    network.print();
}
```

Summary: Label correctors

- **Shortest path algorithm**
 - 22 lines of code, after initialization
 - Down from 200+ lines 25 years ago for d'Esopo-Pape
 - One addition operation, otherwise only increment, compare
 - 3 data structures (queue/candidate list, network, tree) as arrays
 - They control the very simple algorithm very efficiently
 - Linked list would be too expensive
 - Memory allocation in small chunks is very slow
 - Separate data structures and algorithm would be too expensive
 - Method call overhead noticeable in real time algorithms
 - One preprocessing trick used by Hao-Kocur:
 - Sort arcs out of node by distance. Get a bit of ‘Dijkstra effect’
Label setting algorithm: Dijkstra

- Dijkstra labels are permanent
 - Once set, they do not need to be corrected
- Greedy algorithm
 - Starts at an arbitrary node, which is the root of the tree
 - Puts arcs on a heap as they are discovered
 - Each arc’s distance = distance to its ‘from node’ from root + arc distance
 - The algorithm deletes the top arc from the heap
 - If the ‘to node’ of the arc is not labeled, the arc becomes part of the shortest path tree
 - If the ‘to node’ is labeled, its destination node has already been labeled by a shorter path, and this arc is discarded
 - The algorithm terminates when all nodes are labeled
 - When (nodes - 1) arcs have been added to the shortest path tree
 - Or when the heap is empty (if graph is not connected and all nodes are not reachable)

Dijkstra code, p.1

```java
public void shortDijkstra(int root) {
    final int MAX_COST = Integer.MAX_VALUE/2; // 'Infinite' initial
    final int EMPTY = Short.MIN_VALUE; // Flag for no value: -32767
    Heap g = new Heap(arcs);

    D = new int[nodes]; // Distance from root
    P = new int[nodes]; // Predecessor node from root

    for (int i = 0; i < nodes; i++) { // Initialize all nodes
        D[i] = MAX_COST; // Initial label -> infinity
        P[i] = EMPTY; // No predecessor on path
    }

    MSTArc inArc = null;
    D[root] = 0; // Root is 0 distance from root
    P[root] = 0; // Root is its own predecessor

    for (int arc = head[root]; arc < head[root+1]; arc++)
        g.insert(new MSTArc(root, to[arc], dist[arc]));

    // Continued on next slide
```
Dijkstra code, p.2

for (int i = 0; i < nodes-1; i++) {
 do {
 // Find arc to add to tree
 if (g.isEmpty()) return; // Heap empty; done
 inArc = (MSTArc) g.delete();
 } while (P[inArc.to]!=EMPTY); // 'To' can't be in tree
 int inNode = inArc.to; // Node added to tree
 P[inNode]= inArc.from; // Predecessor is "from"
 D[inNode]= inArc.dist; // Distance from root
 // Add arcs to heap from newly added node
 for (int arc= head[inNode]; arc< head[inNode+1]; arc++)
 g.insert(new MSTArc(inNode, to[arc],
 D[inNode] + dist[arc]));
}
}

// MSTArc class same as in PrimHeap
// print(), main() methods essentially the same

Shortest path algorithm usage

- Quicker to recompute than to retrieve from disk storage
- Label correcting algorithms are fastest for most problems
 - If average node degree > about 30, use Dijkstra
 - Dijkstra best in a few other special cases
- All pairs shortest path algorithms require a lot of storage
 - Usually you don’t need all pairs (you may need many)
 - Label correcting algorithm is typically used, in a loop
- Can terminate early if looking for just one O-D path
 - Obvious in Dijkstra, requires care in label correctors
- Building blocks:
 - Shortest path uses graph, heap, set data structures
 - Network equilibrium (future topic) uses shortest path as building block
 - Branch and bound can use shortest paths as component, etc.
- Can integrate graphs, shortest paths with GIS (display, pan, zoom)
 - Integrate graphs and quadtrees
 - Can also integrate address lookups, etc.
Shortest path algorithm usage, p.2

• Negative edges (but no negative cycles)
 – Simple algorithm to convert to all costs > 0
 • Do one pass with label corrector
 • If negative cycle found, terminate
 • Add label difference between origin and destination nodes to negative arc costs
• Negative cycles
 – Use label corrector variation to detect
 – This is a different problem (e.g., arbitrage!)
• Kth shortest path, longest path problems, others
 – Combinatorial; often use dynamic programming