1.204 Lecture 19

Continuous constrained nonlinear optimization:
Convex combinations 2:
Network equilibrium

Constrained optimization

Min \(Z(x) = x_1^2 + 2x_2^2 + 2x_1x_2 - 10x_2 \)
s.t. \(0 \leq x_1 \leq 4 \)
\(0 \leq x_2 \leq 6 \)

Unconstrained solution
\(Z(5, 0) = -25.0 \)
Solution
\(Z(4, 4.5) = -24.5 \)

Figure by MIT OpenCourseWare.
Network equilibrium problem formulation

\[\min z(x) = \sum_{a=0}^{x} \int t_a(\omega) \, d\omega \]

subject to

\[\sum_{k \text{ paths}} f_{rs}^k = q_{rs} \quad \forall \text{OD pairs } r,s \]

\[f_{rs}^k \geq 0 \quad \forall k,r,s \]

\[x_a = \sum_{i} \sum_{j} \sum_{k} f_{rs}^k \quad \forall r,s,k \]

if \(a \) on path from \(r \) to \(s \)

Convex combinations algorithm 1

• Applying the convex combinations algorithm requires solution of a linear program at each step

\[\min z^*(y) = \sum_{a=0}^{x} \frac{\partial z(x^*)}{\partial x_a} \cdot y_a \quad \text{for all feasible } y \]

• Gradient of \(z(x) \) is just the arc travel times:

\[\frac{\partial z(x^*)}{\partial x_a} = t_a^* \]

• The linear program becomes:

\[\min z^*(y) = \sum_{a} t_a^* \cdot y_a \]

s.t. \(\sum_{k} g_i^m = q_{rs} \quad \forall r,s \)

\(g_i^m \geq 0 \quad \forall k,r,s \)

\[y_a = \sum_{r,s} \sum_{k} g_i^m \quad \forall a \text{ in path} \]

\[t_a^* = t_a(x_i^*) \]
Convex combinations algorithm 2

- The linear program minimizes travel times over a network with fixed, not flow-dependent times.
 - Total time is minimized by assigning each traveler to shortest O-D path
 - Thus, a shortest path algorithm, plus loading flow on the links used by each O-D pair, solves the linear program
- Line search step uses bisection method which, for a minimization problem, requires a derivative
 - It happens to be easy to compute. After a lot of algebra:

\[
\frac{\partial}{\partial \alpha} z[x^n + \alpha(y^n - x^n)] = \sum_a (y^n_a - x^n_a) t_a(x^n + \alpha(y^n - x^n_a))
\]

Convex combinations steps

- Step 0: Initialization.
 - Find shortest paths based on \(t_0 = t_o(0) \).
 - Assign flows to obtain \(\{x_0^n\} \)
- Step 1: Update times.
 - Set \(t^n_a = t_a(x^n_a) \) for all \(a \)
- Step 2: Direction finding.
 - Find shortest paths based on \(\{t^n_a\} \)
 - Assign flows to obtain auxiliary flows \(\{y^n_a\} \)
- Step 3: Line search. Find \(\alpha_n \) that solves
 \[
 \min_{0 \leq \alpha \leq 1} \sum_a (x^n_a + \alpha(y^n_a - x^n_a)) t_a(\omega) \, d\omega
 \]
- Step 4: Move. Set
 \[
 x^{n+1} = x^n + \alpha_n(y^n - x^n)
 \]
- Step 5: Convergence test. If not converged, go to step 1
Example network

\[t_1 = 10 \left[1 + 0.15 \left(\frac{x_1}{2} \right)^4 \right] \text{ Time units} \]
\[t_2 = 20 \left[1 + 0.15 \left(\frac{x_2}{2} \right)^4 \right] \text{ Time units} \]
\[t_3 = 25 \left[1 + 0.15 \left(\frac{x_3}{2} \right)^4 \right] \text{ Time units} \]
\[x_1 + x_2 + x_3 = 10 \text{ Flow units} \]

Example program output

<table>
<thead>
<tr>
<th>Iter</th>
<th>Step</th>
<th>Link: 1</th>
<th>2</th>
<th>3</th>
<th>Objective fn</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Update</td>
<td>t:</td>
<td>10.0</td>
<td>20.0</td>
<td>25.0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Update</td>
<td>t:</td>
<td>947.5</td>
<td>26.0</td>
<td>25.0</td>
<td>1975.00</td>
</tr>
<tr>
<td></td>
<td>Direction</td>
<td>y:</td>
<td>0.00</td>
<td>10.00</td>
<td>0.00</td>
<td>0.597</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>4.03</td>
<td>5.97</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Update</td>
<td>t:</td>
<td>34.8</td>
<td>34.8</td>
<td>25.0</td>
<td>197.40</td>
</tr>
<tr>
<td></td>
<td>Direction</td>
<td>y:</td>
<td>0.00</td>
<td>0.00</td>
<td>10.00</td>
<td>0.161</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>3.38</td>
<td>5.00</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Update</td>
<td>t:</td>
<td>22.3</td>
<td>27.3</td>
<td>25.3</td>
<td>189.99</td>
</tr>
<tr>
<td></td>
<td>Direction</td>
<td>y:</td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>3.62</td>
<td>4.83</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Update</td>
<td>t:</td>
<td>26.1</td>
<td>26.4</td>
<td>25.3</td>
<td>189.45</td>
</tr>
<tr>
<td></td>
<td>Direction</td>
<td>y:</td>
<td>0.00</td>
<td>0.00</td>
<td>10.00</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>3.55</td>
<td>4.73</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Update</td>
<td>t:</td>
<td>24.8</td>
<td>25.9</td>
<td>25.4</td>
<td>189.36</td>
</tr>
<tr>
<td></td>
<td>Direction</td>
<td>y:</td>
<td>10.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Move</td>
<td>x:</td>
<td>3.59</td>
<td>4.69</td>
<td>1.71</td>
<td></td>
</tr>
</tbody>
</table>
NetworkEquilibrium data members

```java
public class NetworkEquilibrium implements MathFunction {
    public static final int EMPTY = Short.MIN_VALUE;
    private int nodes;
    private int arcs;
    private int[] head; // Graph data structure
    private int[] to; // Graph data structure
    private double[] timeBase; // Zero flow time
    private double[] timeExponent; // 4 in our example
    private double[] timeConst; // 0.015/lanes in example
    private double[] D; // Distance from root
    private int[] P; // Predecessor node back to root
    private int[] Parc; // Predecessor arc back to root
    private double[] xFlow; // Arc flows
    private double[] yFlow; // Auxiliary arc flows
    private double[] arcTime; // t_a
    private double[][] ODtrips; // q_{ak}
    // This java code is tested only on a simple example
    // It should be basically correct for larger problems, but...
```

NetworkEquilibrium constructor

```java
NetworkEquilibrium(int n, int a, int[] h, int[] t,
    double[] tBase, double[] tExponent, double[] tConst,
    double[][] od) {
    nodes = n;
    arcs = a;
    head = h;
    t0 = t;
    timeBase = tBase;
    timeExponent = tExponent;
    timeConst = tConst;
    ODtrips = od;
    arcTime = new double[arcs];
}
```
Changes in shortest path

- Time is method, not data from array.
 - Replace dist in original version with time()
- Times are double, not int variables
 - Ints are faster, but doubles are easier
- Must keep track of predecessor arc as well as predecessor node in shortest path tree result
 - There may be multiple arcs
- Method is private

Shortest path

```java
private void shortestNetwork(int root) {  // root is argument
    final int MAX_COST = Integer.MAX_VALUE/2;
    final int NEVER_ON_CL = -1;
    final int ON_CL_BEFORE = -2;
    final int END_OF_CL = Integer.MAX_VALUE;
    double[] D = new double[nodes];     // double, not int
    int[] P = new int[nodes];
    int[] Parc = new int[nodes];        // May be >1 arc between nodes
    int[] CL = new int[nodes];
    for (int i = 0; i < nodes; i++) {
        D[i] = MAX_COST;
        P[i] = EMPTY;
        Parc[i] = EMPTY;
        CL[i] = NEVER_ON_CL;
    }
    // Initialize root node
    D[root] = 0;
    CL[root] = END_OF_CL;
    int lastOnList = root;
    int firstNode = root;
```
Shortest path 2

do {
 double Dfirst = D[firstNode];
 for (int link = head[firstNode]; link < head[firstNode+1]; link++) {
 int outNode = to[link];
 double DoutNode = D[firstNode] + time(link); // Compute time()
 if (DoutNode < D[outNode]) {
 P[outNode] = firstNode;
 Par[outNode] = link; // Record new predecessor arc
 D[outNode] = DoutNode;
 int COutNode = CL[outNode];
 if (CLOutNode == NEVER_ON_CL || CLoutNode == ON_CL_BEFORE) {
 CLfirstNode = CL[firstNode];
 if (CLfirstNode != END_OF_CL && (CLoutNode == ON_CL_BEFORE ||
 DoutNode < D[CLfirstNode]) ||
 CL[outNode] != CLfirstNode;)
 CL[firstNode] = outNode; }
 else {
 CL[lastOnList] = outNode;
 lastOnList = outNode;
 CL[outNode] = END_OF_CL; }
 }
 }
 int nextCL = CL[firstNode];
 CL[firstNode] = ON_CL_BEFORE;
 firstNode = nextCL;
} while (firstNode < END_OF_CL); }

equilibrium()

public void equilibrium() { // Convergence criterion
 final double CRITERION = 0.001;
 final int MAX_ITERATIONS = 10;
 // Set higher in real code
 // Step 0: Initialization
 xFlow = new double[arcs]; // Initialize xFlow = 0
 update();
 xFlow = directionFind();
 double convergence = 0;
 do {
 // Step 1: Set times based on initial flows
 update();
 // Step 2: Direction finding
 yFlow = directionFind();
 // Step 3: Line search
 double alpha = lineSearch(this, 0.0, 1.0); // 0 <= alpha <= 1
 // Step 4: Move
 convergence = move(alpha);
 // Step 5: Check convergence
 iterations++;
 } while (convergence > CRITERION && iterations < MAX_ITERATIONS); }
update(), time()

```java
private void update() {
    for (int i = 0; i < arcs; i++) {
        arcTime[i] = time(i);
    }
}

private double time(int link) {
    final double TOLERANCE = 1E-8; // Sqrt of machine precision
double time;
    if (xFlow[link] < TOLERANCE)
        time = timeBase[link];
    else {
        double delay = 1.0 + timeConst[link]*
            Math.pow(xFlow[link], timeExponent[link]);
        time = timeBase[link]*delay;
    }
    return time;
}
```

directionFind()

```java
private double[] directionFind() {
    double[] flow = new double[arcs];
    // Assign trips on shortest path (set of arcs)
    for (int i = 0; i < nodes; i++) {
        // Loop thru origin nodes
        shortHKNetwork[i]; // Shortest path from i to all nodes
        for (int j = 0; j < nodes; j++) {
            if (i != j) {
                int pred = P[j];
                while (pred != EMPTY) { // While not back at root
                    // Add this flow to arcs in shortest path from O to D
                    flow[Parc[i]] += ODtrips[i][j];
                    // Find previous arc on path, until we reach the root
                    pred = P[pred];
                }
            }
        }
    }
    return flow;
    // We have flows on all arcs, based on current travel times
```
lineSearch()

// Uses d.derivative—see next slide

private double lineSearch(MathFunction d, double a, double b) {
 final double TOLERANCE = 1E-8; // Square root of machine precision
 final double MAX_ITERATIONS = 1000;
 double m; // Midpoint
 int counter = 0;
 for (m = (a+b)/2.0; Math.abs(a-b) > TOLERANCE; m = (a+b)/2.0) {
 counter++;
 if (d.derivative(m) < 0.0) // If derivative negative,
 a = m; // Use right subinterval
 else
 b = m; // Use left subinterval
 if (counter > MAX_ITERATIONS)
 break;
 }
 return m;
}
// There are better line searches such as Brent's method (see
// Numerical Recipes 10.2-10.4) but bisection is simple and stable

derivative()

public double derivative(double alpha) {
 final double TOLERANCE = 1E-8;
 double deriv = 0.0;
 for (int i = 0; i < arcs; i++) {
 double time;
 double newFlow = xFlow[i] + alpha*(yFlow[i] - xFlow[i]);
 if (newFlow < TOLERANCE)
 time = timeBase[i];
 else {
 double delay = 1.0 + timeConst[i]*Math.pow(newFlow, timeExponent[i]);
 time = timeBase[i]*delay;
 }
 deriv += (yFlow[i] - xFlow[i])*time;
 }
 return deriv;
}

public interface MathFunction {
 double derivative(double alpha);
}
move(), main()

```java
private double move(double alpha) {
    double sumFlows = 0.0;
    double sumRootMeanDiffFlows = 0.0;
    for (int i = 0; i < arcs; i++) {
        double flowChange = alpha * (yFlow[i] - xFlow[i]);
        xFlow[i] += flowChange;
        sumFlows += xFlow[i];
        sumRootMeanDiffFlows += flowChange * flowChange;
    }
    // Compute convergence criterion here, since we have
    // current and previous xFlow
    return Math.sqrt(sumRootMeanDiffFlows / sumFlows);
}

public static void main(String[] args) {
    NetworkEquilibrium g = new NetworkEquilibrium();
    g.equilibrium();
}
```

Summary

- **Convex combinations method (also known as Frank-Wolfe decomposition)** solves network equilibrium problem
 - Flow taken from more congested paths, assigned to less congested paths, until flow changes are small
 - Process equalizes travel times on all paths for O-D pair
 - Uses shortest path code to solve linear program subproblem
 - Shortest path is very efficient even for large networks
 - Convex combinations method converges slowly
 - Faster methods exist but require more data storage and don't use shortest path subproblem as naturally
- **Note the building blocks:**
 - Shortest path algorithm, which uses graph, queue (candidate list) and tree data structures
 - Line search is a bisection (divide and conquer) algorithm
 - NetworkEquilibrium is the master problem, solved by reusing the building blocks listed above
 - Having a library of data structures and core algorithms is key to problem solving and design
Performance of convex combinations

- Convergence is slow, even in our 3 link example
 - Objective function value changes little, but flows and times are accurate to only 2 places after 9 iterations
- Complexity is measured in two dimensions
 - Typical performance ~O(n), where n is number of arcs:
 - Running time increases linearly in usual experience
 - Linear convergence is claimed:
 - $\epsilon_{n+1} = k \epsilon_n^m$, $m = 1$
 - It depends on definition of ϵ
 - Objective function converges linearly
 - Arc flows and times appear to converge sublinearly
 - Linear convergence means each iteration gains one more significant figure
 - Sublinear means less than one more significant figure
 - Superlinear means more than one more significant figure
Congestion

• Highway networks have diseconomies of scale in urban areas
 – Congestion is major element in urban form, environmental quality, urban economics (agglomeration), and travel behavior
 – More trips mean lower service quality
• Transit networks on separate rights of way are often regarded as having economies of scale
 – More trips mean higher service frequency, which gives higher service quality
 – Eventually congestion occurs in transit also, as capacity is approached
• Extensions of network equilibrium formulations handle highway-transit demand equilibrium, variable demand, …
 – Sheffi covers many of them
 – Regional trade, etc. can also be modeled this way