Introduction to Transportation Systems
PART III:
TRAVELER TRANSPORTATION
Chapter 26:
Traffic Signals and Other Control Measures
The slope of the line defining the green band is speed (the ratio of distance to time). If a car stays within that green band as it goes through traffic signals A, B and C, it will continue unopposed by a red light.
We consider the design of “splits” -- dividing the total cycle time (the time between the start of consecutive reds) between the red and green.

We consider “offsets” -- the time between light A and light B turning green.

The question is how to design the splits and the offsets in the two directions optimally.
Optimizing Traffic Light Settings

But what is optimal?

- One might consider the total amount of time spent *stopped* at red lights for vehicles in the system, considering both directions.
- An alternative measure is the number of times that individual vehicles need to stop.
- Simply optimizing the total time in the system is another approach.
Traffic Light Synchronization -- Levels of Sophistication

The “Minus-One” Alternative --
Mystic Valley Parkway, Medford, MA, U.S.

Street Sign

Figure 26.3
Traffic Light Synchronization -- Levels of Sophistication: 2

- Static Synchronization
- Time-of-Day Settings
- Pre-Defined Plans
- Dynamic Systems
Other Traffic Control Ideas

- Ramp Metering
- Dedicated Bus Lanes
- Reversible Lanes
- High-Occupancy Vehicle Lanes
- High-Occupancy Toll Lanes
- Traffic Calming
CLASS DISCUSSION

Use of these various ideas in your city?

Issues:
- Do they work?
- Public acceptance?
- Who gains and who loses?