Lecture 3

Modeling Road Traffic Flow on a Link

Prof. Ismail Chabini and Prof. Amedeo Odoni

Lecture 3 Outline

- Time-Space Diagrams and Traffic Flow Variables
- Introduction to Link Performance Models
- Macroscopic Models and Fundamental Diagram
- Volume-Delay Function
- (Microscopic Models: Car-following Models)
- Relationship between Macroscopic Models and Car-following Models
- Summary
Time-Space Diagram: Analysis at a Fixed Position

Flows and Headways

- $m(x)$: number of vehicles that passed in front of an observer at position x during time interval $[0,T]$. (ex. $m(x)=5$)

- Flow rate: $q(x) = \frac{m(x)}{T}$

- Headway $h_j(x)$: time separation between arrival time of vehicles i and $i+1$

- Average headway: $\bar{h}(x) = \frac{\sum_{j=1}^{m(x)} h_j(x)}{m(x)}$

- What is the relationship between $q(x)$ and $\bar{h}(x)$?
Flow Rate vs. Average Headway

- If T is large, $T \approx \sum_{j=1}^{m(x)} h_j(x)$

- Then, $q(x) = \frac{T}{m(x)} \approx \frac{\sum_{j=1}^{m(x)} h_j(x)}{m(x)} = \bar{h}(x)$

 $\Rightarrow q(x) \approx \frac{1}{\bar{h}(x)}$ This is intuitively correct.

- $q(t)$ is also called **volume** in traffic flow system circles (i.e. 1.225)

- $q(t)$ is also called **frequency** in scheduled systems circles (i.e. 1.224)

Time-Space Diagram: Analysis at Fixed Time

A diagram illustrating a time-space analysis at fixed time, showing position vs. time with a fixed location at s_1 and another at s_2.
Density and Average Spacing

- \(n(t) \): number of vehicles in a road stretch of length \(L \) at time \(t \)
- Density: \(k(t) = \frac{n(t)}{L} \)
- \(s_i(t) \): spacing between vehicle \(i \) and vehicle \(i+1 \)

\[
L \approx \sum_{i=1}^{n(t)} s_i(t)
\]

\[
\frac{1}{k(t)} = \frac{L}{n(t)} \approx \frac{\sum_{i=1}^{n(t)} s_i(t)}{n(t)} = \bar{s}(t)
\]

\[
k(t) = \frac{1}{\bar{s}(t)} \quad \text{(Is this intuitive?)}
\]

Performance Models of Traffic on a Road Link

- Link: a representation of a highway stretch, road from one intersection to the next, etc.
- Example of measures of performance:
 - Travel time
 - Monetary or environmental cost
 - Safety
- Main measure of performance: travel time
- 3 types of models:
 - Macroscopic models: Fundamental diagram (valid in static (stationary) conditions only. Long roads and long time periods)
 - Microscopic models: Car-following models (no lane changes)
 - Volume-delay functions
Macroscopic Flow Variables

- Three macroscopic flow variables of a link:
 - Average density \(k \) (also denoted by \(\rho \))
 - Average flow \(q \)
 - Average speed \(u \) (also denoted \(v \))

- Relationships between variables:
 - \(q = uk \)
 - \((k,q)\) curve: **Fundamental diagram**
 - Fundamental diagram is a property of the road, the drivers and the environment (icy, sunny, raining)

- 3 variables + 2 equations \(\Rightarrow \) only one variable can be an independent variable (But one of the variables \((k,u,q)\) can not be independent)

Data Collected from Holland Tunnel (Eddie, 63)

<table>
<thead>
<tr>
<th>Speed (km/hr)</th>
<th>Average Spacing (m)</th>
<th>Concentration (veh/km)</th>
<th>Number of Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.56</td>
<td>12.4</td>
<td>76.5</td>
<td>27</td>
</tr>
<tr>
<td>9.72</td>
<td>12.3</td>
<td>60.1</td>
<td>58</td>
</tr>
<tr>
<td>11.48</td>
<td>13.4</td>
<td>64.3</td>
<td>125</td>
</tr>
<tr>
<td>13.62</td>
<td>14.6</td>
<td>57.6</td>
<td>203</td>
</tr>
<tr>
<td>18.36</td>
<td>16.8</td>
<td>55.2</td>
<td>236</td>
</tr>
<tr>
<td>20.53</td>
<td>18.1</td>
<td>50.1</td>
<td>416</td>
</tr>
<tr>
<td>22.68</td>
<td>19.7</td>
<td>46.8</td>
<td>656</td>
</tr>
<tr>
<td>24.84</td>
<td>20.5</td>
<td>63.6</td>
<td>835</td>
</tr>
<tr>
<td>26.37</td>
<td>22.6</td>
<td>73.3</td>
<td>1067</td>
</tr>
<tr>
<td>29.16</td>
<td>23.4</td>
<td>94.0</td>
<td>1267</td>
</tr>
<tr>
<td>31.32</td>
<td>25.3</td>
<td>110.6</td>
<td>1596</td>
</tr>
<tr>
<td>33.48</td>
<td>26.6</td>
<td>115.8</td>
<td>1273</td>
</tr>
<tr>
<td>35.64</td>
<td>27.7</td>
<td>111.5</td>
<td>1169</td>
</tr>
<tr>
<td>37.8</td>
<td>28.8</td>
<td>108.6</td>
<td>1096</td>
</tr>
<tr>
<td>39.96</td>
<td>30.9</td>
<td>104.6</td>
<td>1038</td>
</tr>
<tr>
<td>42.12</td>
<td>32.2</td>
<td>99.3</td>
<td>1000</td>
</tr>
<tr>
<td>44.44</td>
<td>33.8</td>
<td>95.8</td>
<td>1087</td>
</tr>
<tr>
<td>46.76</td>
<td>35.6</td>
<td>92.9</td>
<td>1252</td>
</tr>
<tr>
<td>49.08</td>
<td>37.7</td>
<td>89.8</td>
<td>1278</td>
</tr>
<tr>
<td>51.44</td>
<td>40.5</td>
<td>87.5</td>
<td>1281</td>
</tr>
<tr>
<td>53.88</td>
<td>43.2</td>
<td>85.1</td>
<td>1187</td>
</tr>
<tr>
<td>56.32</td>
<td>45.9</td>
<td>82.7</td>
<td>1335</td>
</tr>
<tr>
<td>58.76</td>
<td>48.6</td>
<td>80.3</td>
<td>1438</td>
</tr>
<tr>
<td>61.20</td>
<td>51.4</td>
<td>77.1</td>
<td>1372</td>
</tr>
<tr>
<td>63.64</td>
<td>54.1</td>
<td>74.7</td>
<td>1178</td>
</tr>
<tr>
<td>66.08</td>
<td>56.8</td>
<td>72.3</td>
<td>1172</td>
</tr>
<tr>
<td>68.52</td>
<td>59.5</td>
<td>69.9</td>
<td>1231</td>
</tr>
<tr>
<td>70.96</td>
<td>62.2</td>
<td>67.6</td>
<td>1169</td>
</tr>
<tr>
<td>73.44</td>
<td>65.1</td>
<td>65.3</td>
<td>1372</td>
</tr>
<tr>
<td>75.92</td>
<td>67.8</td>
<td>62.9</td>
<td>1278</td>
</tr>
<tr>
<td>78.40</td>
<td>70.5</td>
<td>60.5</td>
<td>1438</td>
</tr>
</tbody>
</table>

1.225, 11/01/02 Lecture 3, Page 9
(Density, Speed) Diagram for the Field Data

(Density, Speed) Diagram with a Fitted Curve

\[y = 0.0102x^2 - 1.7549x + 84.144 \]
(Density, Flow) Diagram from the Field Data

\[y = 0.0076x^3 - 1.4481x^2 + 74.248x + 80.889 \]

(Density, Flow) Diagram with a Fitted Curve
(Flow, Speed) Diagram from the Field Data

![Flow vs Speed Diagram](image)

(Spacing, Speed) Diagram from the Field Data

![Spacing vs Speed Diagram](image)
(Flow, Pace) Diagram from the Field Data

\begin{figure}
\centering
\includegraphics[width=\textwidth]{flow_pace_diagram.png}
\caption{(Flow, Pace) Diagram from the Field Data}
\end{figure}

1.225, 11/01/02
Lecture 3, Page 17

Relationships between Flow Variables

\begin{figure}
\centering
\includegraphics[width=\textwidth]{flow_variables.png}
\caption{Relationships between Flow Variables}
\end{figure}

1.225, 11/01/02
Lecture 3, Page 18

- k_{jam}: jam density (the highway stretch is like a parking lot!)
- k_{jam}^{-1} = a car length
- $q = uk$
- $q_{max} = q(k_c)$ is the maximum flow, or link capacity
- $u_c = u(k_c) = \frac{q_{max}}{k_c}$
1.225, 11/01/02 Lecture 3, Page 19

Fundamental Diagram

- \(k \in [k_c, k_{jam}] \): arise when flow is slower down stream due to lane drops, a slow plowing-truck, etc
- \(k_c \) is critical, since it marks the start of an “unstable” flow area where additional input of cars decrease flow served by the highway
- \((k, q)\) diagram is fundamental since it represents the three variable as compared to the other diagrams

1.225, 11/01/02 Lecture 3, Page 20

Derived Diagrams

- In general, \(q \) cannot be used as a variable (why?)
- In the road network planning area:
 - \(q \) is also called volume
 - travel time is also called travel “delay”
 - In the case of volume-delay functions, \(q \) is used as a variable
Examples of Classical Volume-Delay Functions

- **Notation:**
 - q is the link flow
 - $t(q)$ is the link travel time
 - c is the **practical capacity**
 - α and β are calibration parameters

- **Davidson’s function:**
 \[t(q) = t(0)[1 + \alpha \frac{q}{c - q}] \]

- **US Bureau of Public Roads**
 \[t(q) = t(0)[1 + \alpha \frac{q}{c}]^\beta \]

Observations on Classical Volume-Delay Functions

- **Examples where the classical model may be acceptable:**
 - Delay at a signalized link
 - $q < q_{\text{max}}$ (mild congestion)

- **What makes the classical model interesting?**
 - It is a function (There is only one value for a given q)
 - Typical functions used are increasing with q, and their derivatives are also increasing (“it holds water” \iff it is convex)
 - The above are analytical properties that have been adopted to study the properties of, and design solution algorithms for, network traffic assignment models (Lectures 4-6)
 - \implies An example of tradeoffs made between realism and computational tractability
Link Travel Time Models: Car-Following Models

- Notation:

\[x_n(t) - x_{n+1}(t) = \text{spacing (space headway)} = l_{n+1}(t) + \frac{1}{k_{\text{jam}}} \]

- Speed of vehicle \(n \):
 \[\frac{dx_n(t)}{dt} = \dot{x}_n(t) \]

- Acceleration (deceleration) of vehicle \(n \):
 \[\frac{d\dot{x}_n(t)}{dt} = \ddot{x}_n(t) \]

- Car-following regime: \(l_{n+1}(t) \) is below a certain threshold

Simple car-following model:

\[\ddot{x}_{n+1}(t + T) = a \dot{x}_{n+1}(t) = a(\dot{x}_n(t) - \dot{x}_{n+1}(t)) \]

\(T \): reaction time \((T \approx 1.5 \text{ sec}) \)

\(a \): sensitivity factor \((a \approx 0.37 \text{ s}^{-1}) \)

Questions about this simple car-following model:

- Is it realistic?
- Does it have a relationship with macroscopic models?
From Microscopic Models To Macroscopic Models

- Simple car-following model: \(\ddot{x}_{n+1}(t) = a(\dot{x}_n(t) - \dot{x}_{n+1}(t)) \) \((T = 0) \)
- Fundamental diagram: \(q = q_{\text{max}} \left(1 - \frac{k}{k_{\text{jam}}} \right) \)
- Proof of “equivalency”
 \[
 \ddot{x}_{n+1}(y) = a(\dot{x}_n(y) - \dot{x}_{n+1}(y))
 \]
 \[
 \ddot{x}_{n+1}(y)dy = a(\dot{x}_n(y) - \dot{x}_{n+1}(y))dy = a\dot{x}_{n+1}(t)dy
 \]
 \[
 \int_0^1 \ddot{x}_{n+1}(y)dy = \int_0^1 a\dot{x}_{n+1}(t)dy
 \]
 \[
 u_{n+1}(t) - u_{n+1}(0) = a(l_{n+1}(t) - l_{n+1}(0))
 \]
 \[
 u_{n+1}(t) = a l_{n+1}(t) + u_{n+1}(0) - al_{n+1}(0)
 \]
 If \(l_{n+1}(t) = 0 \), then \(u_{n+1}(t) = 0 \Rightarrow u_{n+1}(0) - al_{n+1}(0) = 0 \)

From Microscopic Model to Macroscopic Model

\[
 u_{n+1}(t) = al_{n+1}(t) = a \left(\frac{1}{k_{n+1}(t)} - \frac{1}{k_{\text{jam}}} \right)
\]
\[
 \Rightarrow u = a \left(\frac{1}{k} - \frac{1}{k_{\text{jam}}} \right)
\]
\[
 \Rightarrow q = uk = a \left(\frac{1}{k} - \frac{1}{k_{\text{jam}}} \right) k = a \left(1 - \frac{k}{k_{\text{jam}}} \right)
\]

If \(k = 0 \), then \(q = a \)
Since \(q = a \geq a \left(1 - \frac{k}{k_{\text{jam}}} \right) \), then \(a = q_{\text{max}} \)
\[
 \Rightarrow q = q_{\text{max}} \left(1 - \frac{k}{k_{\text{jam}}} \right)
\]

- Note: if \(k \to 0 \), then \(u \to \infty \). Does this make sense?
Non-linear Car-following Models

\[
x_{n+1}(t + T) = a_0 \frac{\dot{x}_n(t) - \dot{x}_{n+1}(t)}{(x_n(t) - x_{n+1}(t))^5}
\]

\[
= a_0 \frac{\dot{x}_n(t)}{\left[l_{n+1}(t) + \frac{1}{k_{jam}} \right]^{1.5}}
\]

If \(T = 0 \), the corresponding fundamental diagram is:

\[
q = u_{\text{max}} k \left[1 - \left(\frac{k}{k_{\text{jam}}} \right)^{0.5} \right]
\]

Flow Models Derived from Car-Following Models

\[
\ddot{x}_{n+1}(t + T) = a_0 \dot{x}_{n+1}^m(t + T) \frac{\dot{x}_n(t) - \dot{x}_{n+1}(t)}{(x_n(t) - x_{n+1}(t))^5}
\]

<table>
<thead>
<tr>
<th>(l)</th>
<th>(m)</th>
<th>Flow vs. Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(q = u_{\text{max}}) (\left[1 - \frac{k}{k_{\text{jam}}} \right])</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(q = u_{\text{max}} k \ln \left(\frac{k_{\text{jam}}}{k} \right))</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>(q = u_{\text{max}} \left[1 - \left(\frac{k}{k_{\text{jam}}} \right)^{1.5} \right])</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(q = u_{\text{max}} \left[1 - \frac{k}{k_{\text{jam}}} \right])</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(q = u_{\text{max}} k \exp \left[1 - \frac{k}{k_{\text{jam}}} \right])</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(q = u_{\text{max}} k \exp \left[\frac{1}{2} \left(\frac{k}{k_{\text{jam}}} \right)^2 \right])</td>
</tr>
</tbody>
</table>
Lecture 3 Summary

- Time-Space Diagrams and Traffic Flow Variables
- Introduction to Link Performance Models
- Macroscopic Models and Fundamental Diagram
- Volume-Delay Function
- Microscopic Models: Car-following Models
- Relationship between Macroscopic Models and Car-following Models